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FOREWORD

This report is the result of research conducted at Purdue University
for the Federal Highway Administration (FHWA), Office of Research,
under FHWA Purchase Order P.O. 7-3-0065. The report will be of inter-
est to those researchers concerned with earthquake vulnerability and
analysis of large underground cavity systems. A methodology is

developed to compare the performance of different design alternatives
of cavity systems .

Copies of the report are being distributed by FHWA transmittal
memorandum. Additional copies may be obtained from the National
Technical Information Service, 5285 Port Royal Road, Springfield,
Virginia 22161 .

Charles F. Scherfey
Director, Office of Research
Federal Highway Administration

Notice

This document is disseminated under the sponsorship of the Department
of Transportation in the interest of information exchange. The United
States Government assumes no liability for its contents or use thereof.

The contents of this report reflect the view of the authors, who are
responsible for the facts and the accuracy of the data presented herein.
The contents do not necessarily reflect the official views or policy of

the Department of Transportation.

This report does not constitute a standard, specification, or regulation,
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CHAPTER 1

INTRODUCTION

1 .1 Motivation

Large permanent underground openings in rock have been constructed

throughout the world. They are used for housing hydroelectric plants,

nuclear powerplants, aircraft hangars, ship docks, storage of petroleum

products and as part of ore mining operations. In all of these uses

there appears to be only nominal, if any consideration given to the

vulnerability of such openings to earthquake effects. Moreover, re-

search of the world literature has located only scanty data from actual

measurements of earthquake effects underground (43).

Although all of the data up to this point show that the intensity

of vibration is considerably reduced at a depth, as compared to that at

the surface, Staunton (87) states that the generalization that earth-

quake vibrations are not wery perceptible underground does not always

hold.

Several approaches exist to analyze the response of underground

openings to earthquake shaking (25). They confirm to some extent the

general trend of the empirical data. The usual procedure consists of

simulating the physical world with an analytical model and predicting the

behavior of the opening under earthquake conditions. However, the

presently existing models do not provide a good answer to the problem



partly due to the introduction of over simplifying assumptions in the

analysis. Figure 1.1 is an illustration of such an approach.

A seismic disturbance is assumed to hit the vicinity of the cavern

The safety of the cavern should be assessed. It is usually evaluated

knowing the response of the cavity to the above disturbance. The

response is obtained by making a number of simplifying assumptions con-

cerning the physical parameters of the rock structure: the medium is

considered to be continuous and the boundary conditions simplified to

the point of considering the initial ambient stresses to be uniformly

distributed - a case which is rarely actually encountered in reality.

Finally the statistical characteristics of the surrounding rock medium

should be considered and their causes evaluated, an aspect that is not

often taken into consideration. Moreover, a scheme should be developed

to make a qualitative evaluation of the data resulting from the ana-

lytical model. It is necessary to develop a means of comparing dif-

ferent design alternatives that exist for projects of such importance.

It is believed that a dynamic analysis of the cavity system will affect

the choice of the best design alternative.

The term "cavity system" is introduced to define the underground

opening, its geometry, the surrounding geologic characteristics and the

bolting system or liner required for the stability of the opening.

The present work is a more systematic study of the dynamic effects

on cavity systems, including development of evaluative criteria to

judge the performance of various design solutions with respect to the

depth, shape of the opening, and the cavity wall reinforcement (rock

bolting and lining). This study focuses on the development and imple-

mentation of a general methodology towards this goal.
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1.2 Problem Components

The cavity system is a physical system and as such it is usually

approximated by models with idealized components that permit a precise

mathematical definition of the system. The choice of an adequate model

having all the critical features of the physical system is a difficult,

if not an impossible task.

Two alternatives exist in modeling the performance of a cavity

system. They represent the extremes of the spectrum of possibilities.

If on the one hand an oversimplified model is used, the results will

loosely or not at all approximate the behavior of the system. On the

other hand if a complicated model is used, it may be difficult and

costly, or very often impossible to use with existing mathematical

tools. However, the main concern here is to define an adequate model,

i.e. flexible with respect to the entire spectrum of possible inputs.

Therefore, it is essential to define the relationship between the

inputs to the system and the outputs representing the response of the

system. For this purpose, the need is to identify the different ele-

ments of the problem.

The basic analytical components are:

- The geologic and rock property analysis

- The seismic analysis

- The rock mechanics analysis

- The evaluation of performance criteria.

A detailed review of the existing theoretical background concerning the

above components is given in Chapter 2.

In the present analysis the to be simulated geologic environment

will be a cavity lying between two faulting systems or major



discontinuities: the latter will constitute the geometric boundaries

of the model. This is a realistic assumption since extensive disloca-

tion and fragmentation of portions of the earth's crust have occurred

in the past throughout all areas of the globe and are active at the

present time.

Concerning the geometric framework of the study, the range of

width for the rock cavity will be between 20-40 meters. The analytical

model will be designed to handle a maximum distance between main rock

discontinuities of 300 to 500 meters.

1.3 Objectives and Procedures

Following the general ideas displayed in the introduction, the

objectives of the present study are:

FIRST To develop a model of the behavior of a cavity system under an

earthquake disturbance.

SECOND To define a realistic design procedure for a cavity system,

taking into account all possible information from site investi-

gation, including the geologic features of a particular site.

THIRD To develop a systematic procedure comparing the different pos-

sible design alternatives for such underground openings.

FOURTH To achieve these objectives within the framework of a numerical

procedure simple and easy to use, based on the physical data

obtainable from a field investigation, and results easy to

interpret physically.

The analysis will be based (1) on a deterministic concept as far

as the transfer mechanism is concerned; (2) on a statistical tool for



the description of the physical parameters involved including the input

seismic disturbance.

The study of an underground opening is understood to require the

following phases:

Phase 1 Find the physical parameters that most accurately describe the

rock media. Take into consideration their variability as

observed from a site investigation.

Phase 2 Find the analytical model for a realistic representation of the

media according to the physical data inferred from the site

investigation.

Phase 3 Define the input seismic disturbance signal, adequately taking

into consideration the random nature of the rock media.

Phase 4 Combine the output from the previous phases to produce a

numerically-based evaluation of the seismic vulnerability of

the cavity system.

Phase 5 Compare several design alternatives according to criteria pro-

duced by the analysis.

The analysis of the geologic and rock properties is necessary since

it provides the parameters describing the physical behavior of the

cavity system. These parameters are inferred from a field investiga-

tion and used as an input to the analytical model along with the seis-

mic signal from the seismic analysis. The outcome of the dynamic

analysis is used to establish evaluative criteria for a given structure.

Finally several alternatives will be compared for the given site. This

will permit determination of the most adequate design for a given site,

based upon the assumptions made during the study.



1.4 Relevance of the Study

In every project dealing with the construction cf an underground

cavity, the concern is tc evaluate the technical feasibility of con-

structing and maintaining such a structure. To realize this goal,

improvements in the related design procedures are needed and can be

achieved only by an increased awareness of the mechanisms and modes of

behavior of the cavity system. Deere and Peck (16) recognized that

this awareness can be reached best by a combination of theoretical con-

siderations and studies of the observed behavior of cavities in the

field. Moreover, because of the complexity encountered in the design

procedures, it will be useful to perform parametric and sensitivity

analyses of the different components of the model, in a framework bor-

rowed from Systems Analysis Concepts.

It is believed that the outcome of the proposed study outlined in

the previous paragraph, could be used to increase the awareness of the

mechanisms tc predict the behavior of the structure under consideration

and to facilitate the design of such cavity systems. More specifically

the aforementioned results could be helpful in the following manner:

1. In a preliminary design to assesses

(a) The acceptable range of structural (rock) response to

seismic effects on large openings.

(b) The efficiency in the selection and location of ground

motion instruments for permanent installation and

monitoring of the opening.

2. In a preliminary design to compare

(a) Different construction procedures.

(b) Different site locations.



In a final design to permit

(a) The best estimation of the distribution of dynamically -

induced stresses and displacements around large openings

in rock media.

(b) The evaluation of the safety level reached in each

sequence of input signals.



CHAPTER 2

REVIEW OF THEORETICAL AND EXPERIMENTAL BACKGROUND

2.1 Introduction

The objective of the present chapter is to justify the conceptual

basis of the study rather than to produce an exhaustive list of refer-

ences. Thus I will present the basic assumptions and logical thought

sequences necessary to an effective simulation of cavity systems and

the development of physical criteria for the comparison of different

design alternatives, will be presented in a rational and orderly manner,

In evaluating the effects of earthquakes on a cavity system one

has to assess the relationship between the characteristics of the

earthquake ground motions, the local rock and geologic conditions at

the site, and the response of the structural system to the ground

motions.

These intermediate phases are synthesized by determining:

(1) The nature of the ground motion generated by an earthquake,

and

(2) Its effects on the cavity system.

Therefore, a brief introduction of the earthquake phenomenon is

given with resDect to the natural environment.

A review of the theory of motion is necessary to a realization of

the relative place occupied by the different solid mechanic approaches



in the framework of the analysis, and to identify the basic physical

parameters. These parameters enable the abstract model of the simula-

tion, adopted for simplicity, to be fitted to the real world. There-

fore, a close examination of the existing simulation models is required

to put the different components of this study into perspective.

Next, the treatment of uncertainty is discussed and related to the

variability of the previously mentioned physical parameters. Such un-

certainty analysis can actually be considered as the link between pro-

totype and the analytical model.

Finally, methodologies for making sound decisions are presented;

these are based on the performance of alternate cavity systems as eval-

uated by the above analytical models.

Throughout the review of the theoretical and experimental back-

ground, reference will be made to the most representative of the pub-

lished literature.

2.2 Earthquake Ground Motion

The evolution of the seismic phenomenon takes place sequentially

as follows. At first a tectonic movement takes place. Then the result-

ing disturbance propagates through the earth media at a megascale con-

figuration (hundreds of kilometers). Finally the interaction between

the resulting signal and the underground opening takes place at a

macroscale configuration (a few kilometers), (Figure 2.1).

The present work will be restricted to the cavity system which is

defined within the macroscale configuration. The stress waves reach-

ing the boundaries of the macroscale configuration will be of random

nature. It is believed that they are similar to the random fluctuations

10
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observed in records of strong-motion earthquakes on the surface of the

earth. The controversy concerning the relations between surface motion

and corresponding underground motions is discussed later. In the fol-

lowing the factors which govern the earthquake motion at the surface

are presented.

2.2.1 Earthquake Signals on the Earth Surface

Hofman (32) suggests three sequential studies to define the

"design earthquake":

A. A Geological and Seismological Investigation - It requires a

listing of all recorded earthquakes in the general area of the site,

and the geological faults exceeding 2 km in length that lie within

350 km of the proposed site.

B. A Prediction of Earthquake Strength and Magnitude - It has

traditionally been a qualitative study in which correlations between

the earthquake signal and the important geologic features are estab-

lished. The eartnquake signal is characterized by its intensity (a

purely subjective factor based on the observed damage) and its strength,

measured as a peak horizontal -ground acceleration (a fraction of the

gravity acceleration g). Many interesting results of such a study are

provided by Housner (35) and Seed et al . (83).

C. A Quantitative Evaluation of Earthquake Motions - This is the

most interesting part from the engineering point of view because its

results can be used directly in an analytical model. The quantitative

characteristics of an earthquake are provided either by a response

spectrum or by a time-motion record. The latter is preferred for

dynamic analyses of complex structures. Therefore, our attention is

12



focused on the acceleration record whose most important characteristics

(35) are: (1) the duration of the record, (2) the predominant period,

(3) the peak acceleration, and (4) the root-mean-square (rms) of the

record.

From many studies related to seisrnicity, it can be concluded that

real earthquake records in a sense constitute individual events related

through a multitude of random parameters to a specific environment.

Therefore, they can be considered as a single realization of the above

mentioned set of parameters, a unique realization that will never again

occur. Moreover, if a parametric study is to be done that considers

all possible values that the different random parameters can take, then

a simulation capability is needed. References (52) and (63) give a

brief history of the simulation techniques proposed in the literature.

The problem of scaling the artificially generated (or design)

earthquake signals from actually recorded earthquake signals is treated

extensively by Seed et al . (84). However, as a general observation it

must be said that the information needed to relate the earthquake mag-

nitude and strength to a specific site is quite limited at the present

time. Consequently, predictions of earthquake magnitude are subjective

and frequently overestimated.

2.2.2 Seismic Response of Underground Structures

Several studies suggest that the earthquake motion is less pro-

nounced at a certain depth underground than on the surface of the earth.

The main investigations supporting this contention are provided by

Crowley (12) and a group of Japanese researchers including, in chrono-

logical order, Nasu (61), Kanai (46), Shima (86) and recently Okamoto

(65).

13



Crowley gives earthquake characteristics in 20 different locations

in the United States and abroad and concludes that the reduction factor

between the surface motion and the motion at depth is period dependent

(see Table 2.1). The same conclusions come Nasu and Kanai in 1950.

Their results are obtained respectively from measurements in the Tana

tunnel (Table 2.1) and the Hitachi copper mine, Some contrary observa-

tions come from Okamoto who found no significant difference in the dis-

placements at the surface as compared to the displacements underground,

at the Kingawa Underground Electric Power plant.

In general the results although sparse in a statistical sense

indicate a reduction of the seismic response with depth. These motions

are found to be dependent both on the natural frequency of the media

and the frequency content of the seismic excitation. Shima's results

of the frequency analyses confirm the above statement. He found that a

similar periodicity existed in both spectra of the surface and under-

ground at frequencies between 0.7-0.9, 1.1-1.8 and 9.0-9.2 Hertz. He

concluded that this result was due to a periodicity contained in the

earthquake signal. However, there was another periodicity which

appeared at the surface signal alone, at frequencies of 2.4-2.7,

4.3-4.7 and 5.4 Hertz. He believed that this result was a consequence

of seismic excitation in the natural periods of the soil layers.

In general the following conclusions can be drawn:

(1) The similarity between the motions on the surface and at

depth increases with the increase of the epicentral distance.

(2) The similarity between the two motions increases with the

increase of the period of the wave.

14
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(3) Periodicities reflecting the natural frequencies of the rock

media are apparent in a frequency analysis.

(4) The rock media is acting as a filter since the recorded seis-

mograms underground are much simpler than those recorded on the surface.

2.3 Fundamentals of the Theory of Motion

The roots of the study of motion are found in the 17tn century in

the theories of Newton, Liebniz, Euler, Lagrange and others. A simple

presentation of their basic assumptions will show, to some extent, the

elegance in these scientists thoughts and at the same time expose the

limitations of the existing theory of motion.

Newton's second law of motion was the fundamental basis on which

the "vectorial mechanics" was founded. It aims to recognize all the

possible forces acting on a given idealized particle, its motion being

determined in a unique fashion by the known forces acting on it at

eyery given time. The basic quantity in Newton's formulation is the

action of a force measured by the produced momentum. The motion of a

particle in space is described by three equations.

Cn the other hand, Leibniz's concept of vis viva (living force,

working force) was the basis of the "analytical mechanics" which bases

the study of motion on kinetic and potential energy, two scalar quanti-

ties. The energy theorem so stated considers the sum of the kinetic

and potential energies to remain unchanged during the motion. There-

fore, the motion of a particle is described by one equation. The ques-

tion then arises of how to relate these two opposing theories. Using

Euler' s and Lagrange's principle of least action the two different

16



formulations can be linked together. Moreover Hamilton's procedure

enables us to consider the work function with respect not only to the

position of the geometric space, but also to the time. This principle

of "least action" asserts that the actual motion realized in nature is

that particular motion for which this action assumes its smallest

value.

Newton's approach can be characterized as a causal description of

things while Leibniz's considerations give a purpose rather than a

cause to the flow of natural events. Indeed vectorial mechanics iso-

lates the particle and considers it as an individual while analytical

mechanics considers the system as a whole. In that respect vectorial

mechanics produces a differential equation of motion and the dynamic

problem is reduced to the integration of that equation; in analytical

mechanics it is sufficient to know one single function which contains

implicitly all the forces acting on the particles of the system.

Geometry constitutes the basis of the formulation of the motion

in both mechanics. It is present in the acceleration term of Newton's

mechanics as well as in the kinetic energy in Leibniz's mechanics.

The above mentioned principles imply a determinism in predicting

a future state of the system. It is based on the knowledge of a pre-

vious state, or otherwise stated, there is a need to know the initial

conditions.

17



The physical parameters describing the motion are the force, the

mass and the acceleration. However, in many cases the initial condi-

tions and physical parameters are difficultly or not at all defined.

In presence of such diversity a new approach was developed to handle

this uncertainty: the statistical mechanics.

The various branches of mechanics are considered to be imperfect

tools in the attempt to reconstruct in our mind the work of empirical

facts. As a consequence of this people started investigating the

reasonableness of the behavior of some physical parameters under uncer-

tainty. It was the beginning of the Probabilistic reasoning which gave

birth to the Probability theory with all the related theories of Sta-

tistics, Decision Theory and Operations Research. However probability

should be viewed as a subjective concept rather than an objective one

which tends to be built on firmer philosophical or logical foundations.

This does not by any means reject the existing probability theory be-

cause as de Finetti (23) pointed out the definitions of "Objective"

probability although useless in an absolute sense, turn out to be of

great help when included as such in the subjectivistic theory.

The latter approach is adopted in the present study in which sta-

tistical means are used to measure our lack of knowledge of the causes.

In that respect, the previously mentioned principle of motion consti-

tutes the causality law and is the vehicle with which to a statistical

set of causes, a statistical set of effects is obtained.



2.4 Simulation Models and Their Conceptual Basis

2.4.1 Conceptual Models

The previously mentioned theoretical background constitutes the

basis for the development of simulation models. Such models are neces-

sary to reproduce to a certain degree of closeness the behavior of the

rock material and the behavior of the structural environment. Clearly

for each one of these two cases a different model is needed. In both

cases the simulation model provides us with the transfer function be-

tween an input and an output quantity, based on experimental evidence.

Tnis experimental evidence is obtained either in the field, at the real

scale or at a laboratory, at a reduced scale.

Three types of modeling techniques exist. They are:

A. The "A Priori Model"

B. The "A Posteriori Model

"

C. The "Pseudo-priori Model

"

In what follows a brief description of each technique is given as

summarized from Boyer and Cannon.

A. The "A Priori" Model . It can be defined as a pure analytical

model. The input of interest is considered to be completely known, as

well as all the possibly available necessary physical parameters charac-

terizing the real world. Predictions are made on the basis of the above

required information.

The theoretical basis of the model is derived from the concept of

continuum which is a mathematical abstraction introduced for conveni-

ence of the analysis. The application of the equations of motion, pro-

duces the governing equations. Moreover, the validity of the physical

19



parameters of the model is controlled by the failure criteria developed

in concordance with field and laboratory experimental tests.

The mathematical formulation provides us with the following:

a. A way to predict the change in the relative position of par-

ticles in the rock mass due to imposed dynamic loads.

b. A way to determine the interrelationship between applied load-

ings and the degree of potential failure.

Stresses can be considered as providing a standard by which the trans-

mission of forces can be measured.

B. The "A Posteriori" Model. This is a technique which involves

the use of the desired real -world system, whose response to an input of

interest, at the real scale, is actually measured. The two quantities

then, input and output are related using a mathematical formulation.

Consequently the only way to obtain the transfer mechanism is to per-

form real scale experimental tests.

There are different methods used to obtain the mathematical form

of the transfer mechanism. Among them the following:

1* Jhe_Fr^guenc^_Spectrijm_Method . A known disturbance is intro-

duced in the media whose transfer mechanism is sought. The magnitude

of the steady-state peak input and the steady-state peak output as well

as the phase angle between the two, are measured. Then the ratio of

the magnitude of the peak output to that of the input are plotted for

the range of frequencies of interest. The so obtained plot is called

the frequency spectrum. Finally the mathematical form of the transfer

mechanism is obtained directly from the frequency spectrum. However,

the solution is only approximate since the frequency spectrum is approx-

imated by a piece-wise linear curve.

20



2- The^Con vo]^u^ion_Method . The working space is the time domain,

and it makes use of the inverse Laplace transform technique. The idea

is that an arbitrary input can be considered as the sum of a sequence

of impulses and that the global response, assuming the system to be

linear, can be found by superposition of the individual impulses.

An "a posteriori" model is used to generate the earthquake loads,

which in our case constitute the input of the overall study.

C« I!)£."E§§y^2.A_PrioH^_Mode2. This technique is similar to the

previous one with the difference that the real -world system is replaced

by an equivalent experimental system. Different types of analogies,

geometric, dynamic etc. can be adroitly used to that end. However this

particular model is beyond the scope of the present study.

2.4.2 Methods of Resolution of the Mathematical Formulation

The modeling techniques built in an abstract framework, have sim-

plified the real situation and have provided the designer with a mathe-

matical formulation. Therefore, at this point the task will be to ob-

tain a solution taking into consideration the physical nature of the

parameters and the input quantities. They can either be deterministic

or of a random nature. Therefore two cases are to be considered in the

analysis.

A. The Deterministic Case . The equation of motion has the form

of a hyperbolic partial differential equation.

1. An §xact_So]_ution. An exact solution for our particular case

with the complexity of the boundary conditions and the need to reflect

complex variations in the rock media is for all practical purposes con-

sidered impossible. Indeed all the existing attempts to solve the
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problem use oversimplifying assumptions, without however succeeding in

simplifying the sequence of numerical operations. Gregory's approach

(26) is an example of such a complexity. His paper is concerned with

the two-dimentional time harmonic vibrations of an elastic, homogeneous

and isotropic half-space, containing a submerged cavity in the form of

an infinite circular cylinder.

Another possibility can be the use of the method of characteris-

tics, which is concerned primarily with the determination of the par-

ticular directions along which integration with respect to only one of

the coordinate directions can be performed. Again the complexity of

the boundary conditions can be overwhelming. More flexibility should

then be sought in an approximate solution.

2* I!)?.$BBr25i!!?§^§-§2ly^i20* T™ approximate solution is derived

from the discretization of the geometric space and the accuracy 1s

directly related to the fineness of the discretization. The problem

specification then is to find the vector of unknown variables which

satisfies the system of hyperbolic partial differential equations in a

given domain and for a certain set of boundary conditions. Moreover,

the above system is usually transformed to a linear system cf equations

by one of the several methods belonging to the following categories:

a. Variational Methods - The differential equation is replaced by

a function which satisfies at the same time the differential

equation also (Ritz's Method).

b. Direct Methods - A processor generates a set of algebraic equa-

tions from the operator equations (least square, collocation,

Gallerkin) .
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c - Integral Methods - Consists of the transformation of tha dif-

ferential equation to an integral equation, relating the

unknown function and possibly certain of its derivatives to

the given value on the boundary. This transformation is

obtained either by the Green's function method or by the Dis-

tribution Theory. The difference in this procedure is that

only the boundaries are discretized and approximated while the

medium is considered as a continuum,

d. Finite Difference Equations - The method is based on the re-

placement of the differential equations by the corresponding

finite-difference equations.

B. The Statistical Case . To our knowledge the only attempt to

estimate the response of structures with a large number of degrees of

freedom, to a weakly stationary random excitation was made by Kayser

(47). In this approach the matrix of complex transfer functions of the

system is estimated using an approximate inverse of the transformed sys-

tem matrix in such a way as to minimize the mean square constraint

forces over a finite frequency interval.

2.4.3 Adopted Mathematical Resolution

The approximate procedures a and b of section 2.4.2 are key to the

Finite Element approach which according to Houstis et al . (36) is al-

most uniformly superior to the classical Finite Difference methods.

Moreover it is the most commonly used technique. However we should be

aware that in using a Finite Element Method, (F.E.M.) nothing can be

said about the absolute error committed in the evaluation of the solu-

tion. Instead some bounds of the apriori error can be specified
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according to the numerical procedure used in each case. The feeling

that one has in dealing with F.E.M. is that it is based mainly on prej-

udice, experience and last but not least on intuition.

On the other hand the previously mentioned statistical resolution

technique is attractive but it requires that the system mass damping

and stiffness coefficients be constant. Moreover it can potentially

handle a much smaller numoer of degrees of freedom than the F.E.M.

From the above considerations it seems that the best solution

approach would be a combination of a F.E.M. technique coupled with an

uncertainty analysis characterizing the randomness of the different

physical parameters.

2.5 Quantifying the Uncertainty

The previous considerations clearly indicate that in order to per-

form as accurately as possible the analysis, the uncertainty involved

in each physical parameter must be explicitly taken into consideration.

Moreover the quantification of this uncertainty must be based at least

in pare on inferences drawn from measurements obtained either in the

real field or ^rcm laboratory tests. Uncertainty is encountered in the

following elements:

1. Uncertainty in the seismic load

2. Uncertainty in material properties

3. Uncertainty in structural geometry

4. Uncertainty in the construction process

5. Uncertainty arising from the simulation model.
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Uncertainties in the process of construction and structural geometry

are almost beyond estimation. Consequently, cur attention will be

focused on the estimation of the statistical properties of the applied

seismic loads and the material properties.

The quantification of the uncertainty is obtained using statisti-

cal or probabilistic tests. The appropriate method is intrinsically

related to the nature of the physical parameter under consideration.

Indeed the uncertainty in seismic loading parameters is evaluated by

using a frequentist approach, while the uncertainty of the rock material

is usually treated by a bayesian approach.

The frequentist concept is based on the assumption that the

probability distribution describing statistically a physical parameter

is undefined, as suggested by Rosenblueth (77). On the other hand the

bayesian concept is formulated within the framework of a complex deter-

ministic universe that our lack of knowledge and technology has failed

to define exhaustively by deterministic means.

In engineering, Rosenblueth (77) suggests to use a bayesian con-

cept of probabilities and this is the case of the present study, in

which a second-moment technique is adopted. This is justified by the

fact that the most accurately defined statistical parameters are the

first and second moments of a distribution rather than the probability

distribution itself. Moreover the statistical moments are obtained

easier from an experimental research in earthquake engineering, with

the current equipment and techniques. Rea (73) gives an exhaustive

list of such equipment.
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2 . 6 Comparing Different Engineering Alternatives

The ultimate goal in any engineering study is the actual realiza-

tion of the study, so that the abstract ideas and forms of the analysis

take real form and use in real life. It might well be that the final

step towards this realization lies outside the world of technology, in

the more subtle and elusive domain of Decision Making. Everyday life

is made of a sequence of decisions. The problem arises though when a

'best' decision is sought whose consequences are felt over a long

period of time and over a large segment of the society. Appropriately

then, global or trend decisions impinge on the collectivity. The role

of engineers and scientists on the other hand, becomes increasingly

important in a world technologically more complex, in providing tne

necessary and relevant information.

One way of interpreting the contribution of engineers towards

"Best Decisions" is by means of Optimization. Given general goals,

objectives and criteria, the engineer is called to produce optimal

designs. A number of Optimization methodologies and techniques exist,

traditionally grouped in the mul tidisciplinary field of Operations

Research, (24). A number of attempts to apply these techniques to the

field of Structural Engineering is reported in the literature. Linear

Programming, Dynamic Programming, and Non-Linear Programming are the

techniques most commonly used, the current trend of development being

towards Multiobjective and Stochastic Programming. The most successful

among these attempts were edited in a book on structural optimization

by R. H. Gallagher et al . , (24). To our knowledge no such attempt has

been made to date in the particular field of Rock Mechanics. The
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complexity displayed in relatively simple structural examples, (82),

may well explain this lack of interest in Rock Mechanics.

An alternate approach towards achieving 'Best Decisions' is

offered by the so-called Game and Decision theory, (54), traditionally

applied to societal systems. The recent recognition of the importance

of the evaluation of the uncertainty in engineering calculations, as

related to the randomness and probabilistic behavior of physical quan-

tities has stirred the interest in applying Decision Theoretic

approaches. An example of such an application is provided in (51),

where a preposterior probability analysis (Bayesian Approach) is used

to determine the level of required information as related to a Rock

Tunnel Exploration study. Resolving the complexity of technical deci-

sion problems, augmented by the uncertainty involved in the evaluation,

by comparing only a discrete number of technologically sound alterna-

tives, as determined by a Decision Tree technique for example, seems to

be a promising avenue. Strong criticism though can result from the use

of one single economic criterion (cost minimization objective), and

from the strong weight given to subjective probability factors.

An approach giving due importance to the existence of numerous and

often conflicting criteria in the selection of a best alternative

exists in ELECTRE, (79). In that respect it might be characterized as

taking the best out of two worlds, the exact world of Optimization

techniques, and the fuzzy world of Game and Decision Theory. Making

use of the elegance of a Graph Theoretic approach, it might well prove

to be a valuable tool in trying to rationalize the traditional engineer-

ing judgement, based on knowledge, experience and intuition. This
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approach is adopted in the present study, in an attempt to implement

such a "Decision under Conflicitng Criteria" scheme for the case of

cavity systems, in Chapter 8.
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CHAPTER 3

DEVELOPMENT OF THE MODEL SIMULATING THE CAVITY SYSTEM

3.1 Introduction

The propagation of a disturbance through a medium is defined as

a mechanical wave. It is characterized by the transport of energy in

the forms of kinetic and potential energy, through motions of particles

about an equilibrium position.

The two essential properties of a medium that describe the re-

transmit on of a mechanical disturbance are the Deformability and the

Inertia . In effect, if the medium is not deformable, any part of it

would immediately experience a disturbance in the form of an accelera-

tion. Likewise, if a medium had no inertia there would be no delay in

the displacement of particles and the transmission of the disturbance

would be propagated instantaneously to the most distant particle.

Therefore, a realistic model simulating the cavity system should be

based on:

First - The essential physical properties representing ac-

curately the rock media, which can only be obtained from

a field investigation and which are: the mass (inertial

component) of the system, the stiffness and damping char-

acteristics of the system and their statistical charac-

teristics, and the water effect properties.
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Second - The essential features for an accurate analysis, which

are: an adequate description of the randomness of the

rock media, inferred from the field investigation, a

realistic consideration of the input seismic disturbance,

and an accurate mathematical tool for the transfer

mechanism taking into account the uncertainty of the

physical input data.

The link between the two sets of features and properties is provided by

an inference model which take into account the spatial distribution of

the field information.

A typical cavity system as shown in Figure 3.1 needs a three-

dimensional model for a realistic simulation. The complexity of the

numerical formulation required by such an analysis would create compu-

tational problems difficult to solve under the actually available com-

puters. . Moreover, a simple mathematical model would privide more

flexibility to introduce the statistical characteristics of the physical

parameters. Therefore, a two-dimensional analysis seems more adequate.

Any vertical section across the opening containing the direction in

which the plane wave is propagated can be taken into consideration.

In the following sections a brief introduction 1s given on the

fundamental ideas used to model the real phenomenon as well as the se-

quence of the numerical procedures used to perform the analysis. The

details and results on each computational step are provided in the

subsequent chapters.

30



1

I/O
>-
oo

C_)

O
>-

en

LlJ

31



3.2 Geometric Framework and Boundary Conditions of the Model

3.2.1 Geometric Framework

It must be realized at this point that while the input seismic

disturbance propagates in a megascale configuration, the analysis of

our model for computational simplicity and efficiency is restrained to

the macroscale configuration. The limits between the two configurations

can be provided by the wavelength of the traveling seismic wave. Con-

sequently something must be said about the predominant period of the

earthquake and the velocity of the wave propagation. One way cf

estimating the seismic wave length is as follows:

From experimental data we know the range of the velocity with

which the waves travel in a particular rock media, ex. the shear

wave velocity in the rock is in the range 30C < V < 650 meters

per second. From accelerograms of earthquakes that have occurred

in the past, the predominant period T causing maximum accelerations

was observed to be in the range of 0.2 < T < 0.8 sec. Consequently,

the wavelength L = V • T is evaluated in the range of 60 to 300

meters. This information will enable us to determine the extent

of the rock media surrounding the opening, that should be taken

into consideration for a realistic macroscale simulation.

It must be noticed at this point that small earthquakes as opposed

to large earthquakes have predominant periods which are different.

Okamoto (66) gives the following data:
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Earthquake scale
Large Medium Small

Predominant Period (sec)

Magnitude (Richter scale)

0.77

7.5

0.77-0.46

6.7

0.17

< 4.0

He also concludes after studying a small number of underground ac-

celeration records taken at a relatively shallow depth that in the

initial stages of the main motions, the underground and surface records

are similar, with however an expected slight lag in time.

Another important feature to our problem is the ratio between the

radius of the cavity and the wavelength of the traveling wave. In

Figure 3.2 two cases are presented. First the situation for which

R/L < 1 (the structure is hit by low frequency seismic load) and

secondly the situation where R/L > 1 (the structure is hit by a high

frequency seismic load).

Both cases can occur during an earthquake since we are dealing

with different frequencies. They necessitate a further subdivision

of the macroscale into a scale 1 region and into a scale 2 region,

Figure 3.2. Furthermore, a distinction is made between the low fre-

quencies and the higher frequencies of the input seismic acceleration

as shown in Figure 3.3. The problem then consists of defining the

relative size of scale 1 and scale 2 as well as the corresponding

boundary conditions.

3.2.2 Boundary Conditions

As said earlier, the analysis will be confined to the macros cale

configuration. The overall dimensions then of the computational model

will have to be defined accordingly. More specifically the location

of the boundaries of the rock volume are to be defined. As it was
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FIGURE 3.2 EFFECT OF DIFFERENT WAVELENGTH SEISMIC LOADS
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suggested previously, it can be expected that only the higher frequencies

of the earthquake signal will directly affect the opening. However, on

the other hand the lower frequencies will affect the type of initial

conditions to be used on the boundaries, Figure 3.2. In the current

practice the location of boundaries is usually determined only from

experience, by a trial and e**ror procedure. Two types of boundaries

are encountered:

Base Boundaries

In actual practice many designers consider a uniform base motion,

provided that the length of the base boundaries is less than one-fourth

of the wave length, i.e. less than 15 to 60 meters. However, the

size of the cavity systems of interest here does not permit such a

simplification. Indeed from the existing underground caverns (see

Table 3-1) we can deduce that on the average the diameter of the opening

is in the range of 20 to 40 meters, which implies that the expected

length. of the base boundaries to be used in a model will be in the

range of 300 to 400 meters. This clearly shows that, because of the

presence of space variations we are concerned with time phase dif-

ferences which exist from one point to another over the base dimensions

of the boundaries.

Lateral Boundaries

Their location is dictated by the presence of a faulting system

or of a major discontinuity encountered in any given geologic section,

detected by a field investigation. An illustration of the above is

given in Figure 3.4, in which several possible locations for the con-

struction of the cavity system are indicated towards a realistic and

efficient design. Such a geologic section is most commonly encountered.
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TABLE 3.1 EXAMPLES OF EXISTING UNDERGROUND OPENINGS

PROJECT

DVERBURDEN

(D)

CROSS SECTION

DIMENSIONS

TYPE OF ROCK
FINITE ELEMENT

MESH

TYPE OF

LINING

CAVERN
TURLOUGH

HILL
IRELAND

D = 100m

28m
GRANITE

316 NODES

252 ELEMENTS

SHOTCRETE
15 cm

ANCHORS
5m LENGTH

(38 KN/m
2

)

CAVERN
WEHR

D = 350m

r\

19.5m

33m GNEISS
356 NODES

339 ELEMENTS

SHOTCRETE
15 cm

ANCHORS
4m LENGTH

(24.5 KN/m
2

)

CAVERN
TAIWAN

planned

-25m4.

34m
SANDSTONE

400 NODES

397 ELEMENTS

SHOTCRETE
20 cm

ANCHORS
6m LENGTH

(24.5 KN/m
2

)

MORROW
POINT

D = 120m

s~\

p7.1mj

40.20nr

Precambrian
METAMORPHTC

ROCK
(Mica Schist)

554 NODES
561 ELEMENTS

BOLTING
SYSTEM

E. HYATT
Power-
plant

D = 91 . 5m

r\
42.7m GRANITE

744 NODES

704 ELEMENTS

BOLTING
SYSTEM

-l~?J_nU

PROJECT
OF

NUCLEAR

PLANT IN
SWEDEN

planned

D 100m

Concrete and

steel 1n

a rib like

structure

I
50 m ___]_.
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Clearly the rock medium surrounding the opening is the main element

supporting the compressive stresses developed by the opening. However,

structural elements are usually added, namely anchor bolts and a liner.

They merely contribute to make uniform the behavior of the rock material

near the opening causing it to behave like a monolithical beam. An

interface between these two regions of different scale behavior should

be considered in the analysis. A scale 3 is distinguished for the

previously defined scale 2, as that region prestressed by the bolts

system and the liner, Figure 3.2.

Both, slip and separation can exist between scale 2 and scale 3.

However, due to the oscillatory nature of an earthquake we can assume

that they will be of short duration and of an intermittent nature.

Consequently, as a first approximation, complete fixity between scale

2 and scale 3 is assumed with however compatability in the inertia!

forces acting between the two regions.

Summarizing, the geometry of the cavity system 1s characterized

by the following scales, Figure 3.5.

Scale 1: defines the limits of the macroscale configuration.

The media is perturbed by the low frequency seismic wave.

Scale 2: defines the media perturbed by the high frequency

seismic wave.

Scale 3: defines the rock-bolts system and liner perturbed region.

The above considerations are based on the behavioral aspect of the

rock media but as it is shown later, they are in complete concordance

with the requirements of the analytical model.
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3.3 Evaluation of the Physical Properties Governing
the Behavior of the Media

Two material components are considered in this study, namely the

rock mass and the reinforced concrete constituting the liner. Their

physical properties affecting the dynamic study are the mass, stiffness

and damping. In turn these properties depend on some physical parame-

ters determined through site exploration and laboratory tests. A

thorough study of these parameters is given in the following chapter.

These properties characterize the behavior of the media in every point

in the space enclosed by the above specified boundaries. They con-

stitute the fundamental link between the real environment and the

analytical model adopted for simulation purposes.

It is generally recognized that within any homogeneous rock mass

the physical properties exhibit a variability which must be considered

in a design project. This variability is due to different causes during

the geologic formation of the strata, and can be estimated from a site

investigation. This will in turn provide the designer with the de-

sired physical properties of the rock media at particular locations

where the drillings are performed. To handle the variability of the

rock media, an uncertainty factor is introduced in the simplified

analytical model

.

Two interrelated problems are then encountered:

A. How the above mentioned uncertainty of the physical properties

will be inferred from the field information.

B. How to introduce the uncertainty of these properties in the al-

ready existing analytical model simulating the real world.
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Both problems can be treated by assuming that the rock properties,

say Z-(x,y,z) are spatial stochastic processes, as suggested by
w

Cornell (3). Thus to a point in space (x,y,z) corresponds merely a

probable value of Z-, whose statistical uncertainty can be decreased
w

at the expense of additional field information.

The above two problems are in common practice solved independently

and not coupled together to provide a consistent picture of the real

world phenomenon. A usual way to deal with the first problem is by

making the assumption that the statistical properties of the rock

media are the same throughout the region of interest or in other words,

that the process reflecting the randomness of the physical property is

stationary. In that case there is no need of an inference model and

one can proceed to solve the second problem by applying a first-order

uncertainty analysis in connection with the already existing analytical

model. This approach was adopted by several investigators in the field

of continuum mechanics, B. Cambou (7), L. Esteva (22), and J. Padilla

(67).

However, in rock mechanics the above procedure cannot be adopted

and the first problem has to be solved exhaustively merely because of

the nonstationarity of the physical properties. Following these

order of ideas an inference model coupling the field investigation

with the analytical procedures is developed in Chapter five, offering

the necessary flexibility for a more detailed statistical treatment.

3.4 Analytical Model Handling the Uncertainty

of the Transfer Mechanism

A factor of uncertainty was seen to be introduced by the previously

mentioned physical properties and parameters. Consequently, this
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uncertainty measured by means of the variability of these parameters

needs to be introduced in the transfer mechanism, basically described

by the equation of motion:

2

[M] i-I">+ [C] 2r^+ [K] • {u} * - [M] —X (3-1)
at

dZ
at*

in which gravity forces and other external forces are neglected where:

M = is the mass

K = is the stiffness matrix

C = is the damping coefficient

{u} = displacement vector

3
2
{u

b
>—*— = is the given acceleration at the boundaries.

at*

Randomness in Eq. 3-1, is introduced through the parameters M, C

and K. This randomness is expressed by means of estimating their first

and second moments. However, nothing can be said about general proper-

ties of their probability distribution due to the non-stationarity at

the scale of the study.

The first and second moments of the displacements (unknown vari-

ables) are then computed using a multivariate technique according to

the so called first-order uncertainty analysis by Cornell (3 ) and

Papoulis (68).

Of the various numerical procedures used in practice to solve

the above partial differential equation, the finite element method

offers the most realistic and simple formulation. The equivalent

continuum describing the cavity system is considered as being dis-

cretized into small regions or elements with different physical

properties.
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However, due to the wave nature of the dynamic problem three

important discretization criteria are required according to Chopra

and Vaish (92). These criteria are discussed in a subsequent chapter.

They are fulfilled only if the domain of interest is analyzed in three

different scales, in accordance with the dynamic behavior of the rock

media, as discussed previously.

The general solution of the governing equation then is of the

form:

{u] - L"
1

{F> (3-2)

where {u} = the displacement vector

{F} s the load vector.

The inverse hyperbolic operator L~ is evaluated through the

finite element procedure and is a function of the random variables

z-j , z«» •••» 2 . Applying now the first order uncertainty analysis as

described in Papoulis (68) and applied by Cambou (7) the following

moments are obtained:

First Moment

E[u(z-|,z
2
,...,z

n
)] = {u(z

1
,z

2
,...,z

n
)>

2
« 3 u(z,,z 9 )

+ hi*; M- + ...] (3-3)
z

l 3z^

The second part of the second member can be neglected being a very

small quantity.
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Second Moment

- 2

2
-

2
Zu{ZyZ

2
,..)

E[u(2r z
2
,...,z

n
)] -^ -^-

- 2
? 3u(z,,Z~,..)

+ % 3Z
2

+ - ^
The interesting point here is that the evaluation of the partial

derivatives can be treated by the finite element approach without any

extra computational cost. The numerical details are given in Chapter

five. The above equation can be solved according to one of the fol-

lowing numerical techniques:

1. Direct Integration (Working space s time domain or frequency

domain).

2. Modal Analysis (Working space = time domain).

These methods differ in the way they handle the damping of the system,

as well as the high frequency component of strong earthquake motions.

The selection of the adequate technique will be made based on the ac-

curacy of the results and the simplicity in the use of the existing

input data.

Consequently, the procedure adopted for the three different

scales specified previously is as follows:

A. Scale 1 - It is the largest scale of the model and it is per-

turbed by the relatively low frequencies of the earthquake signal.

Therefore, the damping effect can be neglected. On the other hand,

the input perturbation strongly depends on the modes of vibration of

scale 1. Therefore, a modal analysis technique seems appropriate for

this scale.
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B. Scale 2 - It is the intermediate scale in which the rock media

must be described as accurately as possible. The finite element mesh

will be more dense and the damping of the material should enter into

consideration since the higher frequencies will be present.

C. Scale 3 - It is the smallest scale and it requires the more

sensitive model. Therefore, the geometric nonlinearities should be

taken into consideration.

The overall procedure will make use of plane strain elements which

will be triangular or rectangular in the scales one and two and one

dimensional elements for scale three. It is to be noticed that only the

two or three circular frequencies are needed in this approach and,

therefore, the modal analysis is considerably facilitated. Particular

attention is given in considering the interaction between these three

different scales.

3.5 Input Seismic Load

In the previous chapter the brief introductory remarks concerning

the seismic load suggested the use of artificially generated earthquake

signals. Indeed the existing building code load classifications have

shortcomings concerning the perscription and the characteristics of the

dynamic loads. R. Levy gives a detailed account of the existing tech-

niques related to the simulation of earthquakes signals. He concludes

that the models based on filtering a white noise input are more ade-

quate in providing a background for earthquake simulation, since they

are simple in concept and execution. They are all based on an "A

posteriori" modeling approach in which a single degree of freedom os-

cillator is used to filter the white noise according to some criteria
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of the simulation processes. Most of the researchers agree that the

significant criteria are:

1

.

The Maximum Ground Acceleration

The simulated seismic signal should provide similar values for the

maximum ground acceleration as measured from actual earthquake.

2. The Response Spectra

The response spectra of the simulated signal when normalized to a

common intensity spectrum should be similar to the standard spectra.

3. The Autocovariance

The normalized autocovariance functions for the simulated ground

acceleration should exhibit the same characteristics and should

tend to fit the envelopes provided from real earthquakes. The

underlying assumption here is the stationarity of the process during

the period of strongest motion.

4. The Nonstationarity

The simulated seismic signal should exhibit the same nonstationary

trend as past observations, i.e., the simulated ground velocity

and acceleration should ascend to a maximum value and then decay

to zero over the duration of the earthquake.

The lack of strong underground earthquake records, makes the task

of calibrating the simulated earthquake signal difficult. In effect,

only few investigations are available to date with often contradicting

conclusions as seen in Chapter 2. Most of these measurements provide

a direct empirical evidence for a reduction in seismic response with

depth. However, it 1s clear in these investigations that the motions

are dependent on the natural frequency of the media and the frequency

content of the seismic excitation.
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The above considerations along with the recorded ground motions at

different sites provided by Seed (84) suggest that the geologic media

approximately behave like a cluster of discrete masses connected by

springs and dashpots. This is particularly evident in site locations

3 and 5 of Figure 3.6. For this reason, a two degree of freedom filter

is developed taking into account the natural frequency of the cavity

system as well as the damping factors obtained from the existing data

as illustrated in Figure 3.7.

The equations of motion for the second degree system are:

Mu
1

+ K(ury) + C(ury) - cfiig-u.,) - kftig-Uj) = C3-5)

mu
2

+ c(u
2
-u.j) + k(u

2
-u.j) - (3-6)

It must be reminded that only a general inference can be assessed

of whether or not a simulation process is consistent with the statistics

of past earthquakes, since only a small number of earthquake records

exists to date.

3.6 Model Implementation

An integrated view of the tasks undertaken in the present study

is displayed in Figure 3.8. In particular, Figure 3.8 shows the struc-

ture of interaction of the different phases of the analysis. In what

follows the flow-diagram is examined in some detail.

The physical parameters which characterize the geological environ-

ment and their spatial distribution are estimated in phase one through

the use of the Inference model. Phase two is concerned with the imple-

mentation of the analytical tool that permits the simulation of the

transfer mechanism. Phase three provides the key information concerning

the dynamic input for the final computational step of phase two.
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PHASE ONE

Determination of SCALE i

Identification of physical parameters

and their variabil i ty

Identification of their spatial dis-

tribution using an INFERENCE MODEL in

connection with a field INVESTIGATION

I
PHASE TWO

F.E. analysis to evaluate the effect of the

excavation coupled with an UNCERTAINTY ANALYSIS
j

F.E. Dynamic analysis of scales 1 and 2 using

triangular elements

Perform Model analysis couples with an

UNCERTAINTY ANALYSIS r*

F.E. analysis of scale 3 using beam elements

F.E. analysis of underground flow coupled with

an UNCERTAINTY ANALYSIS

Evaluation of resulting stresses and their

first and second statistical moments

PHASE THREE

Evaluation of the maximum Induced

Acceleration in relation with the

natural frequency of scale one

PHASES FOUR AND FIVE

Outcome of previous phases used

to compare different DESIGN

ALTERNATIVES

FIGURE 3.8 LOGICAL FLOW-CHART OF THE DIFFERENT PHASES OF THE STUDY
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Finally the outcome of phases two and three is combined to provide

the evaluation of possible design alternatives, according to a set of

performance criteria.
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CHAPTER 4

PHYSICAL PARAMETERS DESCRIBING THE CAVITY SYSTEM

4.1 Introduction

The cavity system can be separated into the rock structure and

the liner system. The rock structure consists of the rock mass sur-

rounding the opening as defined in section 3.4. The liner system

consists of a liner fabricated from any combination of structural

materials such as steel and concrete.

However, the main concern in this chapter is the mechanical

properties of the rock mass which are highly variable in comparison

with the mechanical properties of the liner materials.

In the following an extensive study of the rock properties is

presented while for the liner materials properties the fundamental

relationships are taken from Lew (53).

4.2 Nature of the Geologic Environment

Experience shows that any possibly encountered geological en-

vironment belongs to one of the three following cases. Figure 4.1:

CASE A : Nonstratified rock mass broken by fractures. In these cases

it is assumed that the maximum dimension of any individual

rock block is smaller than the widest span of the opening

analyzed. The fractures can have a uniform spacing, or a

non-uniform or random spacing.
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CASE B : A layered rock mass having two or more layers, each one with

different elastic properties. The opening can be intersected

by two or more steeply dipping or horizontal layers.

CASE C : Intersection of any of the preceding environments by a steep-

dipping fault.

However, from the design point of view Case C should be avoided

because of the high risk of hazard. In the following the focus will be

on the geological environments A and B.

The first two cases are treated by a unique analytical model

provided that the discrete parts forming the real rock bodies are

physically described. This is accomplished through a set of parameters

that take into account nature's randomness.

4.3 Quantifying the Physical Parameter of the Rock Media

The design code in structural engineering normally requires the

specification of both the configuration and the properties of the

material forming the structure. The properties of the construction

material as is the case for the liner, are usually known with good ac-

curacy from laboratory investigations. However, this is hardly the

case in a geological environment where the designer is faced with a

material whose properties far deviate from the ones of idealized

materials. Indeed the properties of the existing materials are seldom

accurately known. Moreover, they may change significantly within

short distances.

These properties are defined in terms of some physical parameters

which are quantified from:
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A) In site experiments including 1) seismic and dynamic tests;

2) measurements of the permeability coefficients; 3) measurements

of the degree of fracturing in drill cores; 4) measurements of

the oscillations of the groundwater level in bore holes, and 5)

measurements of the state of stresses in the rock media.

B) Laboratory experiments including static and dynamic tests on samples

obtained from the drill cores.

The combination of the above two experimental works is necessary

to obtain as much knowledge as possible while recognizing their biases

and imperfections.

Three predominant types of rocks are shown to exist according to

a geologic classification. They are the sedimentary, igneous and

metamorphic rocks. However, in the present study a classification

based on the mechanical behavior of the rock would be more appropriate

for the analysis. Table 4.1 provides one such. mechanical classifica-

tion based on Isanberg's work, (38).

In each of the three groups of factors that control the mechanical

behavior of rocks, the parameters considered to efficiently represent

the behavior of a rock mass, are the following:

First group : Intrinsic parameters -

The modulus of elasticity, and shear modulus, rock porosity and rock

permeability, and the strength parameter.

Second group : Extrinsic parameters (Environmental parameters) -

The confining pressure and the pore pressure within the rock. The

rare of deformation of the rock.

Third group : Dynamic parameters -

Mass density and internal damping.
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Figure 4.2 shows the informations that site investigation provides

concerning the above mentioned parameters. A considerable discrepancy

appears to exist between the values obtained in situ and the laboratory,

Judd (44).

Intuitively it can be realized that the laboratory samples are

not representative of the larger rock mass system. Indeed there is

experimental evidence that the strength of the rock decreases as the

sample volume increases (69). This is believed to be the consequence

of discontinuities within the rock mass. Their spatial distribution

is, therefore, essential if one wants to correlate the laboratory

test results for small specimens and the large scale field tests.

In the following an emphasis is put on how to consider the dis-

continuities in conjunction with the determination of the above mentioned

mechanical properties of the rock and on how to define the statistical

characteristics of these properties from field investigation.

4.4 hecnanical Properties of Rock with Respect to Discontinuities and
Their Spatial Distribution

4.4.1 Intrinsic Parameters

As such one can distinguish the modulus of Elasticity (E), shear

modulus (G), Poisson's ration (v), strength parameters and the per-

meability coefficients k and k in the x and y direction respectively.
x y

The Modulus of Elasticity E

Rodriguez (69) recently determined the mean value and the dis-

persion of the modulus of elasticity taking into account the dimensions

of the rock mass and the probability of occurrence of the joints

existing within the mass. He has shown by means of thousands of simple
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comparison tests that the mean value of the modulus of Elasticity is

independent of the test area, but rather is influenced by the in-

tensity of jointing. More specifically:

where: E = the mean modulus of elasticity

I, - the mean modulus of elasticity for the intact mass

m a fitting parameter depending on the type of rock

I - the intensity of jointing per meter.

On the other hand the mean modulus of elasticity for the intact mass

can be evaluated from laboratory dynamic tests from the following ex-

pression, Appendix A:

2

v^[3(
V
P/

V
s) - 4]

E - p • -§
5 (4.2)

1
C(v

p
/v

s
)*- i]

where: V
p

- the velocity of the compression wave

V the velocity of the shear wave
s

p - the mass density.

The parameter -m' is obtained through laboratory tests. Rodriguez (69)

suggests the following values:

for LIMESTONE m = 0.084

GNEISS m = 0.015

GRANITE m = 0.041

The intensity of jointing is specified according to some norms given

in a subsequent paragraph 4.4.4.
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The Shear Modulus G

It can be defined from the following relation

G = (4.3)

2(1 + v)

provided that the mean modulus of elasticity and the mean Poisson's

ratio are known.

Poisson's Ration v

Kulhawy (50) found that the value of v tended to decrease with

increasing confining pressure. He proposed the following relation-

ship:

v = v T -nlog-—
'I " -

Pj
(4.4)

where: v. s the Poisson's ratio at a confining pressure of one at-

mosphere.

It can be obtained from a dynamic test as for the case of the

Modulus of Elasticity from the relation

- _ 1

V
I
"2
row-

2]
(v

p
/v

s
)

2
-

1J

(4.5)

where: n * a fitting parameter usually between 0.05 - 0.01

a
3

the confining pressure

p s the atmospheric pressure.

The Strength Parameters

They are directly dependent on the failure criterion that is used,

Indeed, recently many models of the strength of the rock have been

developed to describe more accurately the behavior of the media.

Lundborg (55) used the statistical theory to elaborate a model making
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the assumption that the statistically distributed strength follows a

Wei bull distribution.

On the other hand Sandler (81) developed the so called CAP model

for static and dynamic conditions for the computational studies of

ground shock. This model is in fact an elaborated version of a plas-

ticity model defined by a yield surface and a strain rate vector.

However, in our case it seems more appropriate to use the Mohr-

Coulomb failure criterion which is simple to use and which in addition

can be applied to any type of rock and its corresponding state of

fissuration as suggested by Talobre (39) and illustrated in Figure 4.2.

Then

tmx
= T

c
+

<
S
n " u > tan + ( 4 - 6 >

where: t = shear strength in the failure plane
max 3 r

t s apparent cohesion

<t>
' angle of internal friction

S - normal stress to the failure plane (Principal stress)

u = interstitial water pressure

The statistical characteristics of the shear strength can now be

evaluated using a multivariate approximation provided that the first

and second moments of the independent parameters <}>, t , and S are

given.

To our knowledge there is no experimental work done in trying to

correlate the parameters <j> and x with the mean discontinuity spacing.

However the range in which the parameters $ and x can vary is given in

Figure 4.3 along with an illustration of the different strength theories

in the domain of principal stresses.
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The Permeability Coefficient k and k
* i.

Morgenstern (59) studied experimentally the effect of simple

systems of parallel cracks on the equivalent permeability of the mass.

Clearly the amount of cracks per meter is the governing parameter for

the permeability coefficient. However, different results can be ob-

tained depending on whether the flow is increasing or decreasing.

Another possibility could be that if high pressures are used flows may

also increase due to the so called hydraulic fracturing of the rock.

Nelson (52), suggests the following relation for the permeability:

k
fr

* A + B (P
c
r n

(4.7)

where: k
f

- permeability of the rock matrix plus fractures

P - the confining pressure, and

A,B,n = some fitting parameters determined experimentally.

Nelson's results are illustrated in Figure 4.4 and are obtained

for a given fracture aperture, which in turn can be evaluated from

the known number of cracks per meter of rock.

4.4.2 Extrinsic Parameters

They are the confining pressure and the pore pressure of fluids

within the rock mass. They represent somehow the initial conditions

of the analysis.

CONFINING PRESSURE

The natural state of stress is needed in defining the initial

conditions that need to be introduced in the analytical model. It

exists at a point within the rock mass and is dependent of all the

previous geologic processes that have acted on the mass. To know with
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any degree of accuracy what all these events have been is an impossible

task. Deere (15) gives an emphasis to the fact that there is no justi-

fication for the so commonly used assumption that the horizontal stress

at a given depth below a horizontal surface is related to the over-

burden pressure in accordance with the elastic theory by a factor

v/l-v . Indeed any one of a number of geologic events could cause the

horizontal stress to differ significantly from this value. Major deep-

seated tectonic movements and thrust faulting would also lead to cer-

tain stress states and boundary conditions which differ greatly from

those considered by the elastic theory.

Therefore, a field investigation is a necessity. In the field of

tectonophysics two techniques exist for the determination of the in

site stresses, the 'stress relief technique and the 'hydrofracturing 1

technique. The latter is better suited for our case in which an in-

vestigation as deep as 300 meters is required. Haimson (28) recently

verified the method experimentally both in the laboratory and in the

field. Indeed the magnitudes of the two in site principal stresses

may be evaluated as illustrated in Figure 4.5.

WATER PRESSURE

The pore pressure of fluids is commonly obtained from boreholes

and could exhibit a pronounced variability. Indeed the observed

groundwater level oscillations in boreholes can exceed several meters

causing some important differences in the effective stresses of the

rock media.

On the other hand, the dynamic action of the earthquakes on the

change of the pore pressure is relatively unknown. Indeed there is no
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experimental evidence to assess a general theory, with the exception,

however, of Biot's theory concerning the dilatational waves in an ideal

fluid-saturated solid. Biot's procedure was applied by Hardin (30).

He found that a variation in confining pressure produce little change

on the wave-propagation velocity in the water. This allows us not to

consider the effect of the water table on the wave propagation and to

uncouple the flow problem and the dynamic problem concerning the rock

media.

4.4.3 Dynamic Parameters

The important parameters to perform any kind of dynamic analysis

are the apparent specific gravity and the damping.

The Apparent Specific Gravity

The apparent specific gravity is in fact providing the inertia!

term in the analytical treatment. Its evaluation does not represent

any particular problem and its statistical characteristics are easily

obtained from laboratory tests.

Damping Parameter

In the present analysis the term damping defines the energy dis-

sipation properties of the media under cyclic load, and in most cases

a conversion of mechanical energy to heat is involved. Moreover,

damping is subdivided for convenience into two major headings which

shall be identified as 1) the internal damping, and 2) the structural

damping.

The internal damping, sometimes called hysteretic damping, is

related to the energy dissipation within a volume of rock and it ex-

cludes the damping in a configuration originating at interfaces be-

tween recognizable parts. It concerns a volume of 100 - 1000 cm .
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As for the structural damping it is the damping in which energy is

dissipated in various configurations of joints or interfaces.

In the case of the cavity system a structural damping would be

more appropriate to retain since a modal technique is adopted for

the analysis.

The modal damping factors at least for the first few modes can

be estimated from the outcome of a forced vibration test performed in

situ, in the vicinity of the cavity system, similar to the tests done

by Martin (56) at Bon Tempe dam, in which it was assumed that the

energy delivered to the dam by the vibration generators was consumed

by viscous damping.

Assuming that the damping is small, it is shown that the viscous

damping factor or fraction of critical damping can be evaluated from

the equation

Af.

5
1

= jT— 1 = 1, modes (4.8)
ni

where: Af. = the width of the resonant peak for the corresponding i

mode of vibration at an amplitude of 0.7 times that of

the corresponding resonant amplitude

fn-j
= ^e resonant frequency of the i vibration mode.

Consequently, the damping constants are estimated from the widths

of the first 6 to 10 resonance peaks since these are more clearly de-

fined than those of higher modes. This is seen in Figure 4.6 which

represents the response curves obtained from the analysis of observed

resonance frequencies at different locations.
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However, the above test never reaches the pure modes of the cavity

structure. The above values then must only be viewed as estimates of

the true values of the modal damping factors.

Another alternative would be to perform laboratory tests.

Richart (74) indicates that they provide a damping factor which does

not correspond to the range of frequencies encountered in a seismic

analysis.

Moreover to our knowledge the effect of discontinuities on the

damping factor has not been investigated yet.

It seems that most of the designers in practice are adopting a

damping factor in the range of 0.05 - 0.25.

4.4.4 Rock Quality Designation (RQD)

From the previous considerations it is obvious that discontinuity

characteristics play a major role in controlling the mechanical be-

havior of a rock mass.

The index universally adopted to describe the discontinuity in-

tensity is the Rock Quality Designation. It reflects the proportion

of intact borehole core lengths that are 0.1m or longer, Deere (14).

More specifically the RQD is given by the following equation:

n x.

RQD =100 J -r (4.9)
i=l

L

where: x. = the length of the i length greater than 0.1m

n = the number of intact lengths greater than 0.1m

L = core length

The RQD value is usually evaluated on the rock cores recovered

from a site investigation. However the results must be used with ex-

treme caution since natural discontinuities can be confused with the

drill induced discontinuities.
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Another alternative is to assume the relation established by

Priest (72) between the mean discontinuity frequency per metre and the

RQO. This relation estimating the RQD is:

RQD = 100 e"°-
U

(0.1X + 1) (4.10)

where: x = mean discontinuity frequency per metre.

An illustration of the above equation is given in Figure 4.7.

4.5 Spatial Distribution of the Mechanical Parameters

To measure a rock property Z as indicated in section 4.4, a number

of samples are taken from borings as shown in Fig. 4.8. The values of

the rock property Z (e.g. Modulus of Elasticity) can be interpreted as

spatial averages of point properties over finite volumes within the

rock mass. These finite volumes can also be characterized as sample

volumes, defined by the diameter of the drill and an approximate length

of one meter. The choice of one meter of length is suggested by the

previously mentioned techniques used to estimate the physical parameters

of the rock as a function of its discontinuities.

For the bidimensional analysis the spatial average 1 of a rock

property is defined as:

Z(x,y)-t-dx.dy

7< X ' Y > - "
volume ^

where: t = the third dimension.

If the sample volume is divided into six cores, (the length to diameter

ratio L/D of the core must be in the range from 2.0 to 2.5) the above

relation becomes:

6

Z(x,y) * 1/6 •
I Z. (4.12)

i = l
1
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Furthermore we can assume that the regionalized variable Z is station-

ary. We then can compute a statistic C(0) by squaring all values of

Z., taking their sum and dividing by the number of observations:

n
?

C(0) = ^— (4.13)

where: n =6 for our case, and

C(0) = the variance of Z

To relate the value I(x ,y ) a given point (xQ,y
Q

) in some manner

tc the value at points some distance away there is a need, of a covari-

ance measure. This is done in the following way.

A vector of distances 'd' is specified with a specific orienta-

tion. Then a plot of the covariance between pairs of points various

distances apart is evaluated, using the following relation:

k

C(.d * j) 4.^ zr z
(i +j)

< 4 - 14 >

where: j = an integer taking values from to m.

The covariance defined in that manner expresses the degree of

relationship between points a specified distance apart, as shown in

Figure 4.9.

Davis (13) suggests a drilling grid to perform such an analysis.

However in the present work, results obtained by other investigators

are used after adequate transformations. Sample values of the covari-

ances of different mechanical parameters are given in section 4.7 where

a case study is presented.

It must be emphasized that the covariance, defined as function of

distances, is an essential statistical characteristic of the inference

model developed in the following chapter.
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4.6 Mechanical Properties of Liner Materials

Two alternate designs are considered here, namely a reinforced

concrete liner, and a bolting system plus a concrete liner. Figure .10

gives the spatial configuration of the liner system.

The material properties required for both cases are the Modulus of

Elasticity of the concrete, the Poisson ratio of the concrete and the

Modulus of Elasticity of the steel. The computational scheme suggested

by Lew (53) and Bello (2) is adopted unchanged here also, since the

properties of the concrete and steel both in a deterministic and sta-

tistical sense are well known.

The values retained in our study are:

MODULUS OF ELASTICITY CONCRETE

STEEL

E
c

* 2. x 10
5

kg/cm
2

E
$

= 2. x 10
5

kg/ cm
2

POISSON' S RATIO CONCRETE v
c
=.2

4.7 Hypothetical Case Study

A real case would certainly constitute the best choice to test the

proposed model. However, the great expenses involved in a site inves-

tigation render a real case study prohibitive. The only alternative

left is to consider an existing case of underground power plant and

simulate the mechanical properties of the rock media, according to the

general scheme introduced in section 4.4. This is certainly sufficient

for testing the performance of the models developed in the following

chapters.
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LINER SYSTEM WITH ROCK BOLTS

ZONE UNDER
COMPRESSION

DETAIL ON THE INTER-

ACTION BETWEEN ROCK
BOLT AND ROCK MEDIA

s
g: A////V//A

j^^— INDUCED SHEAR

RESISTANT-
FRICTION

TENSION ALONG
THE ROCK BOLT

ACTIVE
FRICTION

The rock bolt acts as reinforcement of the rock. The rock displace-
ments develop an active and resistant friction zone at both ends of the
bolt. The central part of the bolt has no action of friction stresses, so
the tension force is constant.

LINER SYSTEM WITH REINFORCED CONCRETE

SECTION A-A

STEEL REINFORCEMENT

CONCRETE

FIGURE 4.10 LINER'S MATERIAL
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A geologic vertical section is shown in Figure 4.8 with some

hypothetical drillings. The geologic structure of the site is inspired

from Poatina's underground power station (21 ) as presented in Chapter 9,

Figure 4.11 shows a hypothetical site exploration, consisting of twenty

borings among which nine are in the geological section under considera-

tion. From these nine borings 48 samples of one meter length are

assumed extracted and tested in a laboratory. As an example the re-

sults of sample no. 24 (Sandstone) and sample no. 27 (Limestone) are

presented. The following measurements and tests are assumed performed

on the real specimen.

1. Measurements of the dry density and apparent specific gravity

2. Unconfined compressive strength

3. Wave velocities, P-wave and S-wave

4. Evaluation of the elastic constants

5. Effect of loading on elastic constants using cyclic loading to

25, 50, 75 percent of ultimate strength.

SANDSTONE Sample No. 24

Six specimens were considered, characterized as homogeneous, light

brown quartzose, elastic (fine-grained) sandstones. They also were

moderately cemented and weakly friable to hand pressure. A few small

(3-4mm) iron stain inclusions were observed without however any appar-

ent bedding structures or fissures.

LIMESTONE Sample No. 27

Three specimens were considered, characterized as light grey, fine

grained, homogeneous. Bedding planes were evident dipping 20-25 with

respect to the specimen's direction.
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The above tests provide the Intrinsic parameters used in the anay-

sis as summarized in Table 4.2. As far as the Extrinsic and Dynamic

parameters are concerned evidently field tests for their determination

would require a great deal of effort and expenses. Therefore the

appropriate values considered are borrowed from the literature. This

is also the case for the determination of the covariances of the

mechanical parameters. They are assumed to fit exponential distribu-

tions, as suggested by Padilla's work (67), based on a field explora-

tion. The values of the parameters used in the present study are

grouped in Figures 4.11 to 4.12 and are similar to the results obtained

from a site investigation by the core logging committee of the South

Africa Section of the Association of Engineering Geologists (27).
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CHAPTER 5

INFERENCE MODEL AND ITS INTERFACE

WITH THE ANALYTICAL UNCERTAINTY MODEL

5.1 Introduction

In Chapter 3 the need of an inference model producing the input

data to the main analytical scheme on the basis of field information

was demonstrated. Indeed a rock volume is assumed to be made up of a

number of elementary volumes within which the physical properties of

the rock are treated as stationary. However, the properties assigned

to ewery particular point in a two-dimensional space must be inferred

from a limited number of rock samples. Clearly then there is a need of

an inference model to generate a complete set of input data from the

small amount of information produced by field investigations.

Krumbein (49), describes the fundamental techniques used in defin-

ing linear inference models. Such techniques are for example the method

of least squares, fitting a polynomial of two variables, etc. However,

all these techniques fail to provide an evaluation of how good the esti-

mation is. They also exhibit operational difficulties for the nonsta-

tionary case. A different inference scheme is proposed by Matheron (58).

It is based on a model originally suggested by Krige (48), and is par-

ticularly well suited to treat nonstationary cases. A similar moving

average technique is presented hereafter, that generates the spatial

83



distribution of the physical properties of the rock media, defined in

the previous chapter. Also the interfacing of the Inference model with

the analytical Finite Element model is shown below.

5.2 Justification of the Moving Average Technique

Drill hole samples most often produce extreme values which are

erratic in their spatial distribution. Figure 5.1 gives an illustra-

tion of the variability of some commonly investigated physical parame-

ters. Therefore there is a need for models generating smooth spatial

distributions of these parameters. Two such models most commonly used

are based on trend surface estimates and moving average estimates.

It is generally observed that moving average estimates are supe-

rior to trend surface estimates. In the former case the estimation is

exclusively based on adjacent informational sets, the more distant sets

exerting no influence at all. In the case of the trend surface esti-

mates, the estimation is based on all known data. Moving average

estimates tend to be more stable than corresponding polynomial trend

estimates obtained from the same number of data points, especially if

the sample points are sparce, Whitten (94). Davis (13), observed that

moving average schemes in two dimensions have not been significantly

tested yet. Indeed the time series analysis from which this method is

derived is not as well developed at the present time, as the regression

analysis, for example, on which the trend-surface method is based.

Among the moving average methods, the Kriging (names by French

geomathematicians in honor of Krige) seems to be the most advantageous.

More specifically the Kriging technique makes optimal use of the given

data and provides a measure of the variance of the estimation made at
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any specific location. Both these features are essential if the

results from the Inference model are to provide the input for an uncer-

tainty analysis as proposed in Chapter 3. However it is believed

that a general method incorporating parts of both techniques may give

superior results.

5.3 Implementation of the Inference Model

in a Two-Dimensional Geometric Space

5.3.1 Statistical Model and Corresponding Assumptions

To determine the values of a rock property Z(x,y) a number of mea-

surements are made on rock samples from bore holes. The set of points

where observations are made is indexed by 8 and 1 represents the mea-
ts

sured value of the random rock property at point s. Z(x ,y ) is the

estimation of property Z at a particular point (* »y
Q

) in the media,

evaluated from the measured Z„ values.
s

One simple way to obtain this estimation is to define Z in terms

of the known values Z
fl
according to a linear combination as follows:

p

p-l

where: 1 Q
are the known data points,

p

b
fl

are unknown weight coefficients to be determined by the
p

Inference model

.

An alternate approach would be to estimate the mean value of

Z(x,y), namely Z(x,y) at point (x ,y ), according to a linear combina-

tion:

2(W =
l h h (5 - 2)

6~ l
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where: Z is the mean-value at the known data points,
s

a. are the unknown weight coefficients.

The random variable Z(x,y) in turn can be expressed as follows:

Z(x,y) = 2(x,y) + FZ(x.y) (5.3)

where: 2(x,y) is the mean value, and

FZ(x,y) is the fluctuating term around the mean.

This model leads to two possible groups of assumptions. They con-

cern the first and second moments of the random variable Z(x,y). The

first group is:

E[Z(x,y)] = 2(x,y) (5.4)

ECZ(x
1
,y

1
), Z(x

2
,y

2
)] = l(x^ 9y^) • Z(x

2
,y

2
) +

C((x
1
,y

1
), (x

2
,y

2
)) (5.5)

where: Z(x,y) is the mean value, and

C(x,,.. ) is the covariance of the variable Z(x,y).

These assumptions are in many cases too restrictive and need to

be replaced by more flexible ones. This can be realized by focusing

op the rate of change of the random variable Z(x,y), as follows:

E[Z(x
1
,y

1
) - Z(x

2
,y

2
)] = Z(xry.,) - 2(x

2
,y

2
) (5.6)

E[(Z(x
1
,y

1
) - Z(x

2
,y

2
))

2
] = 2 r((x

1
.y

1
), U

2
,y

2
)) (5.7)

where: y(x, .. . ) is the variogram or semivariance of the difference

l{*
l
,y

l
)

- Z(x
2
,y

2
)

Interestingly the variogram y(d) and the covariance C(d) are both

defined as functions of the distance between two locations and can be

related by Eq. 5.8, as shown in Appendix B:
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Y (d) = C(o) - C(d). (5.8)

As shown in Figure 5.2, y(d) and C(d) are complementary.

Both above sets of assumptions concern the stochastic model. An

additional set of assumptions is needed to specify the nature of the

randomness of the variable Z(x,y), in particular its mean and its vari-

ance.

Locally at a point (x,y) the mean Z(x,y) is approximated as a

linear combination of known functions:

k

Z(x,y) I a. f^x.y) (5.9)
1»1

1

where: a. are unknown weight coefficients,
i

f'(x,y) are apriori known functions locally approximating

2(x.y).

The global trend analysis of most real cases, Davis (13), can be

represented by a polynomial equation of the first, second or third

order. Therefore it can be intuitively seen that locally the trend can

be best approximated by quadratic functions as shown in Figure 5.3. A

corresponding norm can be defined for a best approximation with respect

to the encountered trend.

The covariance C(x-,,x
2

) can be computed from field measurements,

and can be represented by the following expression:

C(xr x
2

) k e"
ad

(5.10)

where: d is the distance between x-, and x
2

,

a, k are fitting parameters.

In many cases the variogram y(d) is more suitable than the covari-

ance C(d) to define the distances over which, realizations of the
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random variable Z are interdependent. Thus a range of maximum allowable

sampling interval can be evaluated. The expressions most commonly used

for y(d) are:

Y (d) = + 3a log(d) (5.11)

or Y (d) « o(d) (5.12)

where: a and e are fitting parameters.

The first expression is often referred to as DeWij's model, while

the second as Linear model. The selection of the adequate expression

for y(d) is difficult since it requires a very careful treatment of the

data obtained from field investigation. Matheron (58) gives a case

study of such a treatment as illustrated in Figure 5.4. In the present

study both expressions were tested,

5.3.2 Identification of the Best Estimator

Summarizing, up to this point two sets of model assumptions are

given, Eqs. (5.4) and (5.5) and Eqs. (5.6) and (5.7), concerning the

random variables Z{x,y). Both these sets of assumptions can be used to

identify estimators of both the random variable Z(x,y) and its mean

2(x,y).

The first model, (Eqs. (5.4) and (5.5)) is used to obtain the best

estimator for the random variable Z(x,y) itself. Both models identify

the best estimators among all possible functions satisfying the hypoth-

esis concerning the randomness of the rock media, Eq. (5.9). This is

done by minimizing the variance of the estimation, Eqs. C5.5), respec-

tively (5.7), subject to the first moment constraints, Eqs. (5.4),

respectively (5.6). The Lagrange Multipliers approach is used for

this constrained optimization problem. The computations carried out in

Appendix B, lead to the following results:
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FOR MODEL 1 concerning the estimation of the mean Z(x,y) (from

Eqs. (5.4) and (5.5)).

The method of Lagrange Multipliers leads to a set of n + k equa-

tions with n + k unknowns, namely the weight coefficients:

I a? f - «? =
; £. = l,...k

(5.13)

a

,3

I a

where: a£ are the unknown weight coefficients,

p are the Lagrange Multipliers,

<5? is the Kronecker delta.

The variance of the estimation is given by:

St

E[Z(x,y)]
2

- I p f\x,y) ; i-l,...k (5.14)
e *

FOR MODEL 2 concerning the estimation of the random variable

Z(x,y) (from Eqs. (5.6) and (5.7)).

Similarly the following system is obtained (Appendix B).

$ 4

I b
a

f
l

= f*(x) ; 4 = l,...k (5.15)
a

with I h
a =1

a

p
where: b

p
are the unknown weight coefficients,

p are the Lagrange Multipliers.

The variance of the estimation is given by:

l = l,...k (5.16)

E[Z-Z]
2

- I b
a

Y (x ,x) + I v f
l

; a = l,...n
a I
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5.4 Interfacing the Inference Model with the Analytical Model

5.4.1 Uncertainty Analysis in the Analytical Model

As mentioned previously the analytical model is treated using the

finite element technique which provides us with the transfer mechanism

between a set of inputs {F} and a set of generally unknown outputs {u}.

The general solution is given by the following relation in matrix form:

{u} = [K]"
1

{F} (5.17)

where: {K} is generally known as stiffness matrix and is defined as a

function of the random variables 2,, Z » ..., Z ,
I 2 n

{F} is the loading term.

Applying now the first order uncertainty analysis as described by

Papoulis (68), the first and second moments of the unknown vector {u}

are obtained as follows:

FIRST MOMENT

E[{u(Zr Z
2
)}J * {u(Zr Z

2
)> +

+ k5 a-
2

3
Z
(u(Zr 2

2
)}

hi
1

(5.18)

where: a, is the variance of the physical parameter Z,

.

The second part of the right hand side can be neglected being a very

small quantity.

SECOND MOMENT

E[{u(Zr Z
2
)}

2
] . o\

/ 3{u(Z
1

,Z
2
)}\

2

2
j

/ 3{u(Z
1
,Z

2 )}^
2

3Z
+ a

1 /
h\ 3Z,

+ 2

3{u(Zr Z
2
)} 3{u(Zr Z

2
)}

3Z- 3Z,
covUj.Zg) (5.19)
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The partial derivatives in Eq. (5.19) are obtained from the fol-

lowing system:

3[K(Z
1
,Z

? )]

i = 1,2 (5.20)

The solution is obtained by the classical finite element methodology,

(97).

5.4.2 Coupling of the Inference Model with the
Analytical Uncertainty Model

The estimates of the spatial mean 2-,(x,y), 2«(x,y) and the vari-

ances a7 (x,y), a7 (x,y) provided by the inference model are substituted

in the statistical relations of the dependent random variable {u},

Eqs. (5.18) and (5.19). Thus the first and second moments, as well as

the coefficient of variation of {u} can be evaluated. The coefficient

of variation in particular being an essential statistical property, can

be used to evaluate the performance of the analytical model.

For testing purposes, an example was treated borrowed from the

field of underground confined flow, as shown in section 5.6. The out-

put of the analysis provides the first and second moments of the unknown

hydraulic head {u}, at any specified location of the domain under

consideration.

5.5 Description of the Algorithm

The above described procedure is summarized by the computation

steps of the flow chart of Fig. 5.5. The geometric domain under in-

vestigation is divided using a rectangular mesh common for the Inference
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MAIN PROCRAM INFMOD

Read Input

Initialize W. Areas

Determination of the Mesh

CALL OPER

Stop

SUBROUTINE NUMB

Numbering of Given

Points

SUBROUTINE SORT

Sorting the Points 1n

Increasing Order

SUBROUTINE SEARCH

Search of 32 Given Points

Around Examined Node

CALL SECT 1, 4, 5, 8

CALL SECT 2, 3, 6, 7

CALL EIGHT

I
SUBROUTINE EIGHT

Defines the Eighth Closest

Information to the Exam.

Node

SUBROUTINE LAGR2

SUBROUTINE OPER

Monitoring Sequence of Operations

CALL NUMB

CALL SORT

CALL INITL

Eval ua tion of Esti mated Values

CALL SEARCH

CALL LAGR2

Plotting Comp u ted Values

CALL PLT

RETURN

SUBROUTINE INITL

Evaluation of the Place

Occupied by the First Node

of a Line Inside Vector

NUMTRI

SUBROUTINE SECT 1

Sectors 1, 4, 5, 8

SUBROUTINE LOOK 1

Search Given Inf.

in Sectors 1, 4, 5, 8

Evaluation of the Stochastic

Parameters and Solution

CALL GAUSS

SUBROUTINE SECT 2

Sectors 2, 3, 6, 7

SUBROUTINE LOOK 2

Search Given Inf.

in Sectors 2, 3, 6, 7

FUNCTION COVAR(R)

£» FUNCTION VARIOG(R)

SUBROUTINE GAUSS

Gauss Elimination

Solution of the System

FIGURE 5.5 FLOW CHART OF PROGRAM INFMOD (INFERENCE MODEL)
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Model and the analytical model (Finite element mesh). The computations

are carried out at each node using a number among the known realizations

Z (x,y). Therefore a zone of influence, characteristic of the media
p

are depending on the covariance C(x, ^2) and/or the variogram y(d) is

defined at each node of the mesh. For computational efficiency, V
known points are selected within this zone, to determine the estimation

of the random variable Z(x,y) at that particular node. A polynomial

comporting k terms, approximates the trend of Z(x,y) in the neighborhood

of the node at hand. Thus, at every node (x,y), a system of n + k

equations permits to determine the estimator Z(x,y). The outcome of

the procedure depends on the number of known points and the density of

the provided information Z (x,y).

In case of insufficient information in the domain of interest, the

original assumptions are violated. However, in this case the values of

variance of the estimation indicate the poor performance of the inference

and give the exact location where more information is needed.

The flow chart of Figure 5.5 gives the sequence in which the com-

putations are performed by program INFMOD. The mean values, of the

physical parameters evaluated by the inference model INFMOD are intro-

duced at each node of the finite element mesh. Thereafter, the compu-

tations are performed in a conventional way taking into account the

prescribed boundary conditions. The mean values of the unknown vector

{u} are determined, as well as the vectors 1 , i = 1,2. Finally

the variance of the unknown vector {u} is computed at each node of the

mesh. A more detailed description of the finite element programs,

developed to be coupled with the Inference model, is given in Chapter 6.
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5.6 Example of Application and Discussion

As said in section 5.4 the example of application is borrowed from

the field of underground confined flow. Two groups of tests are con-

ducted to explore the limitations and the applicability of the general

algorithm. One group concerns the inference model alone, while the

other deals with the performance of the finite element model.

FIRST GROUP

The three different tests related to the Inference model, in con-

nection with two different problems, produced the following results:

1. Tests of the statistical convergence

This test was conducted under the assumption of statistical iso-

trophy and for a uniform spatial distribution of the given information

points. More specifically in Problem 1 a domain defined by a square

mesh of 400 x 400m was examined and the random variable Z(x,y) was

assumed to possess a realization lying on a portion of a sphere over

this domain, as shown in Figure 5.6. The domain was divided into

squares of 25 x 25m having 289 nodes where the computations were per-

formed. The given information was located first on nine points as

shown in Figure 5.6, then on twenty-five points and finally on

eighty-one points.

The estimation at the 288 nodes of the mesh was performed by both

Inference models defined previously (Sect. 5.3). Interestingly enough

in the region of great variability of the random variable Z(x,y) the

two models show a good agreement in their estimation, as illustrated in

Figure 5.7.
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Plane of

symmetry

MODEL 1

MODEL 2

Variances

Given points

&y

Error with 81 given points

Error with 25 given points

-Error with 9 given points

RESULTS ARE SYMMETRIC WITH
RESPECT TO THIS PLANE

FIGURE 5.7 ESTIMATED STATISTICAL CHARACTERISTICS OF PROBLEM 1
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As expected, increasing amount of information, produces a smaller

variance of the estimates. The case of largest variance is reported in

Table 5.1.

It is to be mentioned that the maximum error obtained is less than

0.1 percent and that the estimated first and second moments are symmet-

rically distributed with respect to the existing plane of symmetry.

Another interesting feature is that the spatial distribution of

the error is similar to that of the variance, justifying the use of the

estimated variance as an indicator of the error.

2. Tests of the statistical assumptions

These tests concerned (a) the assumptions on the apriori known

function f{y) characterizing the behavior of the mean Z(x,y), and

(b) the assumption on the general form of the variogram obtained

either from site investigation or considered apriori. The tests were

performed on the square 400 x 400m of Problem 1 and over a region

50 x 20m of the flow problem (Problem 2).

Several functions f(x,y) were tested in the above mentioned regions

and the most satisfactory results from the point of view of both accur-

acy and efficiency were obtained for the following quadratic function:

f(x,y) » a
Q

+ a.jx + a^ + a
3
x
2

+ a
4y

2
+ a

g
xy (5.21)

This form was also suggested from a trend analysis (sect. 5.2), applied

to the data of the flow problem as illustrated in Figure 5.8.

The following expressions for the variogram were studied:

Y (d) = a log |d| (5.22)

y(d) = a |d| (5.23)
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TABLE 5.1 RESULTS OF INFERENCE MODEL FOR PROBLEM 1

NUMBER
OF GIVEN
INFORMATION

TYPE OF
MODEL

MAX

ERROR
EXPECTED MAX
VALUE VARIANCE

MAX

COEFFICIENT
OF VARIATION

9 points MODEL 1

MODEL 2

0.056

0.049

3.18 .81

3.45 1.08

0.28

0.30

25 points MODEL 1

MODEL 2

0.011

0.0047

3.33 .35

3.61 0.569

0.17

0.21

81 points MODEL 1

MODEL 2

0.002

0.0007

3.40 0.21

3.62 0.249

0.135

0.14

TA3LE 5.2 RESULTS OF INFERENCE MODEL FOR PROBLEM 2

COORDINATES ESTIMATED ESTIMATED COEFFICIENT OF

MEAN VARIANCE VARIATION

X y
_3

10 cm/sec
-5

10 cm/sec ID"
2

5.000 5.000 .013 .002 3.651

10.000 5.000 .008 .002 6.137

15.000 5.000 .002 .003 32.673

20.000 5.000 .015 .001 2.167

25.000 5.000 .027 .002 1.813

30.000 5.000 .008 .001 4.449

35.000 5.000 .030 .004 2.041

40.000 5.000 .026 .000 .805

45.000 5.000 .018 .001 1.698

50.000 5.000 .171 .071 1.559

10.000 .097 .029 1.736

5.000 10.000 .026 .001 .905

10.000 10.000 .012 .002 3.290

15.000 10.000 .080 .000 .000

20.000 10.000 .053 .004 1.198

25.000 10.000 .061 .001 .603

30.000 10.000 .065 .010 1.534

35.000 10.000 .003 .002 13.735

40.000 10.000 .025 .004 2.696

45.000 10.000 .091 .003 .590

50.000 10.000 .121 .262 4.229

15.000 .503 .026 .323

5.000 15.000 .335 .002 .119

10.000 15.000 .254 .004 .262

15.000 15.000 .331 .001 .069

20.000 15.000 .460 .003 .121

25.000 15.000 .454 .001 .053

30.000 15.000 .418 .003 .120

35.000 15.000 .502 .001 .066

40.000 15.000 .315 .002 .133

45.000 15.000 .542 .002 .079

50.000 15.000 .599 .082 .479
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2 2
where: d = (x,-x

2
) + Cy-i-y^) " distance between points (x, ,y, ) and

ix« »yo/

•

For both expressions the results were similar. However, the logarithmic

expression offers the advantage of defining an influence zone for its

estimation as seen in sect. 5.3.1

3. Tests of the parameters affecting the quality of the estimation

The most important parameter is the distance 'd' between the loca-

tion of the point of estimation and the location of the points of known

data. It was observed that the estimation becomes better as the distance

'd' decreases. This was apparent in both above examples. However, the

spatial distribution of the sample points plays a very important role

also. Indeed if the estimated point is outside the closed space formed

by the set of known points we have an extrapolation scheme while other-

wise we have an interpolation scheme as shown in Figure 5.9.

On the other hand if the number of sample points is increased

without changing their respective distances, the estimation as expected

is not improved, since there is no drastic change in the values of the

weight coefficients, Figure 5.10.

As a conclusion of this group of tests one can say that the model

is sensitive and provides a message through the values of the variances

whenever the basic assumptions are violated. In general the inclusion

of new information in the region where the violation is observed is

improving the final results considerably as it can be seen in Figure

5.11.
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FIGURE 5.8 GENERAL TREND FUNCTION OF THE PERMEABILITY

INTERPOLATION
SCHEME

EXTRAPOLATION
SCHEME

A,B = NODES AT WHICH
AN ESTIMATION IS

B PERFORMED

CLOSED SPACE DEFINED BY THE
SET OF KNOWN POINTS

>X
FIGURE 5.9 TOPOLOGICAL CONSIDERATIONS FOR THE ESTIMATION NODE
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NODE NUMBER

o

cc

8 9 10 12 KNOWN POINTS

— 23

-46;

12 KNOWN POINTS

FIGURE 5.10 ESTIMATED VARIANCES VS. THE NUMBER OF KNOWN
POINTS

1. 1.5

COEFFICIENT OF VARIATION

FIGURE 5.12 EFFECT OF BOUNDARY CONDITIONS ON ESTIMATED VARIANCES
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SECOND GROUP

The following tests, related to the coupling of the uncertainty

analysis using F.E.M. and the inference model were performed:

1. Tests for the convergence of the statistical characteristics

of {u} as a function of the size of the element's mesh.

For the First Moment this was done automatically through a mesh

generation subroutine. For the Second Moment, a denser mesh was con-

sidered only around the flow barriers, where the hydraulic gradient

was important.

A satisfactory convergence was observed, as shown in Table 5.2.

2. Tests of the effect of the boundary conditions on the statis-

tical characteristics of {u}.

Several differential hydraulic heads were. considered and their

results plotted in Figure 5.12. They display expected responses,

namely as the differential head increases, the variance of the unknown

quantity {u} increases also, showing that the flow becomes more vari-

able reaching eventually a state of nonlaminar flow. Interestingly

enough the variances seem to be directly related to the hydraulic

gradient, Figure 5.13.

5.7 Remarks on the Applicability of the Method

Becker, Hazen and Scott (1) have produced statistical evidence

that data selected from random samples produce more realistic in-

formation. Attention then should be given to the randomness of the

sample points, as well as the uniformity of the sample volume. The

Inference model could be used to advantage here as follows:
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A. Randomness of data points

In the Inference model, the data randomness is automatically tested

through the use of the functions describing the statistical constraints,

Eqs. 5.13 and 5.15. Indeed, if the provided information does not fol-

low a random pattern, numerical instability is induced which shows that

complementary information is needed.

B. Uniform sample volume

It is recognized that a basic requirement for the successful use

of statistics in sampling is the uniformity of the sample volume. The

Inference model accounts for this size effect through the use of the

notion of variogram, (sect. 5.2 ). The variogram permits to determine

the range of significant statistical inference around a given point.

On the other hand in Chapter 4 was seen that a one meter boring was

sufficient to produce a good statistical description of the physical

characteristics of the rook. Therefore, it is proposed here, to use

the average values obtained from one meter of borings as the input

information to the Inference model, as illustrated in Figure 5.14.

The above consideration are finally checked in a flow problem

treated in the square domain n = (50 < x < 100, y < 50) with its solu-

tion u (head) subject to boundary conditions

U
A

85 100, u
B

= 50 for y > 25.

x=100x=50

A detailed comparison is also performed between the proposed inference

correlative model (scheme) and a conventional regression scheme, on a

set of five functions representing the permeabilities as illustrated

in Figure 5.15.
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The main conceptual differences of these two schemes are mentioned

in section 5.2 and their computational details presented in Appendix B.

In both estimation schemes, the values of z(x,y) are inferred at

the nodes of a 6 x 6 and 11 x 11 mesh of region n from a set of measured

values of 15 and 25 given s points which lie on the previously men-

tioned functions.

The regression scheme is implemented by assuming a quadratic poly-

nomial trend while the inference correlative scheme 2 is treated re-

spectively with an assumed linear and a computed discrete variogram.

A Monte Carlo technique is used to compute the discrete variogram for

each of the z. functions which in turn is approximated by a least

squares cubic spline function (see Figure 5.16).

The results of this investigation are given in Tables 5.3 to 5.7.

In Table 5.3 are given the deviations and coefficients of multiple cor-

relation (as defined in Appendix B) of the estimation obtained by the

regression and inference schemes. In Table 5.4 the deviations and coef-

ficients of multiple correlation are given for the estimations obtained

by an inference model 2 using an assumed linear and a computed vario-

gram. Table 5.5 gives the mean, coefficient of variation and absolute

relative error of the estimates Z(x,y) obtained by the inference cor-

relative schemes 1 and 2 at points A = (90,10) , B(90,40). In Table 5.6

the absolute relative error of the computed head is given using the

regression finite element and the inference finite element model of

points A(90,10) and B(90,40). Finally in Table 5.7 the coefficient of

variation of the head of points A and B are presented for three dif-

ferent boundary conditions.

no



A number of observations can be made on the above results. On the

basis of the computed statistics the inference model has proven to be

superior to the regression scheme, in particular for functions 3, 4,

and 5 which exhibit rapid slope changes. The coefficient of multiple

correlation improves by increasing the number of given points for all

functions Z(x,y). The assumed linear variogram performs equally well

as the cubic spline least squares approximation of the computed dis-

crete variogram particularly for a dense set of given @ points. The

inference model 2 with the measured variograms gives better estimates

near the boundaries of the flow. The coefficient of variation and

absolute relative error computed by the inference model indicate con-

vergence as the number of points of information increases.

In general the absolute relative error indicates the superiority

of the inference model 2 in all cases. From Table 5.6 it is seen that

the finite-element uncertainty model converges both when the mesh is

refined for the same number of given 8 points or when the number of

given 6 points is increased for the same above mesh. Finally the

finite-element inference model proved to be superior to the finite-

element regression model in all cases. Also the increase of the dif-

ference in head at the boundaries, results in the increase of the coef-

ficient of variation of the head within the flow region, in agreement

with the physical expectations.

in



2

6

^01 NT B

-folNT A

-ox

I

z

POINT B

^POINT A—oX

FUNCTION 1

X(x.y) - EXP((x+y)/30)

FUNCTION 2

2(x,y) « (x.y)
0.6

FUNCTION 3

k - -((x-25)
2

+ (y-25)
2
)/10

8

Z(x,y) = EXP(k).(x-100)-x(y-50).y/k

FUNCTION 4

2(x,y) « EXP(k).(x-100)-(x-50)-y(y-50)/k

FUNCTION 5

k - -((x-25)
2

+ (y-25)
2
)/(100)

3

Z(x,y) « EXP(k).(x-100).(x-50)-y(y-50)/k

FIGURE 5.15 ASSUMED FUNCTIONS FOR THE COMPARISON OF TREND SURFACE
ESTIMATES VS. MOVING AVERAGE ESTIMATES (INFERENCE MODEL)
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TABLE 5.3 DEVIATIONS AND COEFFICIENTS OF MULTIPLE CORRELATION OF THE
ESTIMATIONS OBTAINED BY REGRESSION AND CORRELATIVE SCHEME
FOR TWO DIFFERENT SETS OF 3 POINTS

REGRESSION SCHEME CORRELATIVE SCHEME 2

DEVIATION
(10")

COEFFICIENT OF
MULTIPLE

CORRELATION
DEVIATION

(10")

COEFFICIENT OF

MULTIPLE
CORRELATION

CO
»—

Function 1 .29 0.97 .14 0.98

i—

•

O
Q.

Function 2 .10 0.98 .09 0.99

Function 3 5.0 0.72 1.46 0.92
LU>
»— Function 4 0.22 0.69 .14 0.88

to
f—l Function 5 32.61 0.69 16.69 0.85

to
»— Function 1 .10 0.98 .12 0.986

1—

«

o Function 2 .15 0.99 .05 0.996

2=
Function 3 4.18 0.77 ,75 0.96

UJ>
Function 4 .23 0.74 .12 0.89

to
Function 5 28.22 0.74 12.47 0.89
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TABLE 5.4 DEVIATIONS AND COEFFICIENTS OF MULTIPLE CORRELATION FOR THE
ESTIMATIONS OBTAINED BY CORRELATIVE SCHEME 2 USING LINEAR
AND COMPUTED VARIOGRAM FOR TWO SETS OF s POINTS

CORRELATIVE SCHEME 2

LINEAR VARIOGRAM
CORRELATIVE SCHEME 2

MEASURED VARIOGRAM

DEVIATION
do")

COEFFICIENT OF
MULTIPLE

CORRELATION
DEVIATION

(io 4
)

COEFFICIENT OF
MULTIPLE

CORRELATION

to
1—
2J

Function 1 .14 0.98 .14 0.982

»—iO Function 2 .09 0.99 0.08 0.99

CO.

ii j

Function 3 1.46 0.92 1.73 0.91

>
»—

<

CO Function 4 .14 0.88 0.12 0.89

in
i—

i

Function 5 16.69 0.85 15.65 0.86

CO

2^
Function 1 .12 0.986 .12 0.984

»—

•

o
ex.

Function 2 .05 0.99 .04 0.995

CQ

UJ
Function 3 .75 0.96 .80 0.96

»—

t

C3 Function 4 .12 0.89 .15 0.86

in
CSJ Function 5 12.47 0.89 15.63 0.86
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TABLE 5.7 THE COEFFICIENT OF VARIATION OF THE HEAD AT POINTS A, B, FOR

THREE DIFFERENT BOUNDARY CONDITIONS OBTAINED BY THE INFERENCE
FINITE ELEMENT

DIFFERENCE OF HEAD AT THE BOUNDARIES
x=50 and x=100

AH = 50 AH = 100 AH = 150

POINT AJPOINT B POINT A POINT B POINT A POINT B

f—
2:
»—

1

CD
O.

co.

•z.
LU>
•—

•

CD

LO
t—

1

r—

1

2:

»—

«

»—

ZD
LU

MESH 6x6 0.08 .0015 0.10 0.007 0.12 0.01

MESH 11x11 0.008 0.002 0.013 0.007 0.018 0.01

CO

O—

<

C_)
2T

U-

MESH 6x6 0.020 0.006 0.024 0.004 0.026 0.0057

MESH 11x11 0.012 0.009 0.015 0.027 0.018 0.035

OO
»—

V—*O
Q-

oa

2:
LU>—

«

CD

LO
CM

r—

1

2:O
•—

1

h-
CD
2T
ID
LU

MESH 6x6 0.15 0.015 0.18 0.017 0.23 0.023

MESH 11x11 0.01 0.008 0.016 0.01 0.02 0.012

FUNCTION

3

,

MESH 6x6 0.040 0.010 0.049 0.009 0.058 0.012

MESH 11x11 0.007 0.007 0.012 0.019 0.016 0.025
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CHAPTER 6

UNCERTAINTY ANALYSIS IN THE ANALYTICAL MODEL

6.1 Introduction

In the elaboration of models simulating the cavity system the use

of the finite element technique was clearly justified, (section 3.4).

Also, the coupling of the inference model with the uncertainty analysis

was shown (section 3.4) to provide us with a tool capable of describing

the spatial variability of the constitutive relations of the rock.

The objective of the present chapter is to introduce the uncer-

tainty concept within the finite element procedure. The components of

this analysis are directly related to the different output quantities

needed to evaluate the performance of a given design alternative. These

quantities are:

1. The water pressure affecting the effective stress field.

2. The stress field after excavation.

3. The natural frequency of the structure.

4. The maximum level of stress reached during the seismic load.

5. The maximum moments reached in the liner.

The division of the geometric space under consideration into three

different scales was developed in Chapter 3 for purposes of simplifica-

tion of the analysis. It was based on the superposition principle.

The details and the use of the selected type of elements is presented

hereafter.
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Finally the uncertainty analysis is performed for the underground

flow problem, the initial stress conditions due to the excavation, the

modal analysis adopted for the dynamic phenomenon, and the stability of

the liner.

6.2 General Assumptions Concerning the Analysis
in Conjunction with the F.E.M.

Two topics will be discussed here, the discretization criteria and

the constitutive relationships.

5.2.1 Discretization Criteria

In our particular problem, the governing factor in the discretiza-

tion, is the dynamic aspect of the phenomenon. It is characterized by

energy transmission through wave propagation. The wavelength is known

to decrease as the frequency increases. Vaish (92), established three

criteria of discretization according to the dynamic characteristics of

the phenomenon, nar ely the size of the system, the variation in mesh

sizing, and the sire of the elements.

A. The Size of the System:

When modelling very large or infinite systems, the system has to

be necessarily truncated by introducing artificial boundaries. However,

these boundaries prrtially reflect energy back into the region of inter-

est causing large errors.

Attempts have been made to devise boundary conditions which would

absorb, rather than reflect all the incident energy. For the general

two-dimensional plane stress problem no satisfactory boundary conditions

have been devised yet to absorb the incident energy. In the present

case, Figure 6.1, it can be assumed that the boundaries are far enough
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from the opening so that the reflected waves either dampen out before

returning to the region of interest, or arrive after the response time

of interest.

B. The Variation in Mesh Sizing:

Sudden changes in finite element size will cause a sudden change

of the stiffness ft the interface. This can result in energy reflec-

tion from such interfaces causing substantial errors. Hence mesh size

variation should be gradual. An alternate scheme is proposed hereafter

as illustrated by Figure 6.2.

Clearly a seismic signal is composed of several natural frequencies

each requiring a different mesh size. A Fourier series technique per-

mits the decomposition of the seismic signal into its components. Ap-

plying then the superposition principle, we can imagine a set of dif-

ferent mesh sizes over the same region, each one carrying a portion of

the seismic signal, of different frequency content. This is precisely

done with scales 1 and 2 as defined in section 3.2.2. Scale 1 carries

the low frequencies, while scale 2 carries the high frequencies. More-

over, since the dimension of scale two is a multiple of the seismic

wavelength, no significant reflection is expected to take place at the

interface.

C. Size of Elements:

Since the deformation of any given finite element is assumed to

follow a prescribed form, about eight to ten elements of scales 1 and 2

are required to model a complete wave form. Thus if the wavelength of

the largest significant frequency in the analysis is denoted by L , the

largest dimension of the element should be smaller than L /8 - L /TO.
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As far as scale 3 is concerned it is a subset of Scale 1 and

Scale 2, and represents the liner which possesses a small mass in com-

parison with the mass of the surrounding rock. Therefore, the inter-

action in the dynamic sense between Scales 1 and 2 and Scale 3 is insig-

nificant. Indeed, it can be intuitively seen that no vibrational mode

of Scale 3 can in any case influence the vibrational modes of Scale 1

and 2.

6.2.2 Constitutive Relationships

The conceptual basis of the finite element technique being exten-

sively discussed in the literature is not repeated here. Instead, the

aspects specific to the rock mechanics application of the F.E.M. are

summarized below. The applications reported by Chang (9), are: the

'no tension' analysis, the 'elastoplastic' analysis, the 'viscoelastic'

analysis, and the 'joint' analysis.

The 'no tension' analysis was developed by Zienkiewicz (97) to

model the fissured rock mass based on the assumption that the rock is

incapable of withstanding tensile stresses. However, the convergence

of the proposed iterative procedure proved to be very slow, and the

effect of the development of cracks on the Poisson's ratio, not adequate.

The 'elasto-plastic analysis' is considered to model realistically

the yielding of rock due to the excavation process during the construc-

tion phase of the cavity system.

The 'viscoelastic' analysis was developed by Clough (10), to in-

clude properties of the rock that are time-dependent. However, the great

majority of rocks do not exhibit significant time-dependent behavior

within theE.Q. time interval.
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In the present study, as said earlier, the emphasis is put on the

dynamic phenomenon. Therefore, the following scheme is proposed,

Figure 6.3.

1. A nonlinear elastoplastic behavior of the material is con-

sidered, during the development of the initial stress field

due to the excavation.

2. The dynamic phenomenon is understood to locally perturb the

initial stress-level in the o-e diagram, Fig. 6.3. This

justifies a linear behavior as suggested by experimental evi-

dence, Thiel (91), and by the fact that the magnitude of the

seismic perturbance is small.

6.3 Finite Elements Used to Discretize the Cavity System

The choice of the type of finite elements is influenced by two fac-

tors, namely the accuracy of the solution, and the efficiency of the

computational scheme. A best choice should offer a good balance between

these two factors. Consequently a triangular constant-strain triangular

element is used to represent the rock media as satisfying the following

requirements:

(a) Simplicity in following the correct shape of the boundaries

(b) Good simulation of the structural response with only six

degrees of freedom (d.o.f.). This leaves enough flexibility

to perform the uncertainty analysis.

On the other hand the simulation of the liners necessitates the

consideration of geometric nonlinearities to increase the sensitivity

of the model. Therefore, a beam element using Hermite polynomials is

considered for the Scale 3 elements.
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The 'joint
1 analysis is primarily concerned with bedding planes

and major geologic discontinuities.

6.3.1 Triangular Element with Six d.o.f.

This element is widely used and the computational details associ-

ated with it are given in many textbooks, (98), (18). In the following,

basic relations concerning the derivation of the stiffness matrix are

given in a condensed form.

The general expression of the displacements at the nodes {d}, is

assumed to be a linear combination of linear functions $.:

(d> - { I a. *,}
1-1 ^

1

The displacement field is given by:

(6.1)

(6.2)

where [N] * matrix of the shape functions

{u} = the displacements in the two-dimensional space

{d,} 3 the vector displacements at the nodes.

Assuming linearity of the strain-displacement relationships also,

we have:

d.

{
= [B] d

1

where:

xy

< \

(6.3)

/

3X

_ J 3U

'xy

3y

3X

3U + 3U

ay
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/
9N

3x
~± o

[B]-<o |£;

3y 3x

V /

It is to be noticed that because of the linearity assumption,

matrix [8] is not a function of x and y, so that the stiffness matrix

can be simply written:

J
(6.4)[K] = [B]' • [D] • [B] • t • A

6.3.2 Beam Element with Six d.o.f.

The starting point is to write the expression of the Functional

representing the Strain Energy developed in the beam:

n
s

= E
f

h (e}
T

(a) • dV (6.6)

The strain energy n is a function of the strain vector {c}, the

stress vector {a} and the modulus of elasticity E. The integral has to

be evaluated over the volume of the element and in our particular case

along the Neutral Axis.

The Strain Vector in turn can be separated in three parts, namely

the initial strain {e
Q
}» the linear strain {e, } and the nonlinear

strain i^ :

where:

{£} = U
Q

} + {e
L
> + U

N
} (6.7)

<«n>" o
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{£
L

}
=

{

ie
H
}-(

u
,y'\x'

_ j*v

,X 3X

^(u
2

+ v
2

)^ v
,x ,x'

U U + V V
,x ,y ,x ,y

Since in our case all expressions are functions of the directional

variable X of the beam element, the following relations hold:

\y
=

(6.8)
u s a., - y-v
,x 1

J
,xx

Furthermore, using the Navier's assumption about the planitary of

the cross-section after bending, we can write:

3V
u(x,y) -y

c
x

= -y

3x

3
2
V

(6.9)

+ Nonlinear part .

3x

After substitution, Eq. 6.7 becomes

'
) ( )

£
x

{£}

I
xy

V J V )

The stress vector is given by

(6.10)

{a} - E

L0 GJ

• {£> . (6.11)

The strain energy defined in Eq. 6.6 is computed in Appendix C

taking into consideration the nonlinear terms of the strain as defined

1n Eq. 6.11. Its linear and nonlinear components are given in Table 6.1

as a function of the terms:

v
Y

dx , dx and y
c

dx
,xx
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They are computed after having defined in an apriori way the function

v(x) approximating the vertical deformation of the beam.

Hermite polynomials are found to be the best choice (17) to repre-

sent this vertical deformation. The following basis is proposed:

v(x) = a
}

^(x) + a
2

$ 2
(x) + a

3
<t>

3
(x) + a

4
*
4
(x) x e [0, Lj (6.12)

where: a ;
s coefficients to be determined by the finite element

procedure

a-
1

<j>.(x) = apriori given functions as illustrated in Figure (6.5)

L s length of the element.

The reason for constructing such a basis is the simplicity of the

inner products encountered in the expression of the strain energy,

Eq. 6.6:

fl

(6.13)U^j) s ^U) • <J>j(x) dx

~ '
ax J

^ , -J- - Cn
2

]

\3x 3x

(6.14)

(6.15)

where the symmetric matrices [n, ] and [n«] are, (as computed in Ap-

pendix C):

ro

r°

Cn
2]-f|g

1

1/3

1/20

4

3
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Their simple form clearly justifies the use of Hermite polynomials, and

reduces considerably the computations. The stiffness matrix [NK] is

obtained by minimizing the strain energy (Eq. 6.6) with respect to the

displacement vector {u} in the global coordinate system:

an
s-=

. (6.16)
3{u

It is to be noticed that the stiffness matrix [NK] is nonlinear

with respect to the displacement vector {u}, leading to a nonlinear

system of equations that is solved using the NEWTON RAPHSCN Iterative

procedure. At each iteration, a different linear system of equations

is solved, defined in terms of the derivatives of Matrix [NK] with

respect to the displacement vector {u}. The computational details are

given in Appendix C.

6.4 Uncertainty Analysis Related to

the Underground Flow Problem

In the definition of the overall analytical model, the flow prob-

lem was considered to be independent of the dynamic problem. Indeed

even if the water table was to vary following an earthquake, this would

occur much later than the vibratory motion of the cavity. However, it

is important to know the effect of the water on the stress field sur-

rounding the cavity at the moment an earthquake would strike. This

effect can be estimated if the position of the water table is known

from in situ measurements. In that case the flow can be considered as

steady and confined, which can be handled computationally by a F.E.M.

approach.

Let * be the total head [m] . Its value inside a triangular ele-

ment can be obtained by:
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T

{*} = [N]
T

{*}
e

(6.16)

where: [N] '
= [N, , N^, N,] are the shape functions, and

{*}
e

= the nodal heads of a triangular element.

The conservation law as applied to fluids gives the following

Laplace's equation for a two-dimensional flew:

A. 3
2
V

-f + f =0 (6.17)
3x 3y

where: f = the net inflow into the differential volume dx»dy.

By Darcy's law the velocity in the x and y direction is given by:

v
x W x 3X

V = k i = k —v
y y y y ay

(6.18)

where: k ,k = coefficients of permeability in x and y directions,
x y

i s hydraulic gradient.

Consequently, the Laplace's equation becomes

k 111 + J- k |i + f - o
3x

\
x 3x

] 3y
\
y 3y

The corresponding variational functional is given by:

2

(6.19)

"i ax
j y \ 3y;

3<P!
- f • *] dx»dy (6.20)

This energy expression has to be minimized with respect to the total

head * leading to the expression, Desai (18):

i£
3$

, _3_i J_ fiii .

'X 3X 3* 3X
il _L il

y ay 3$ 3y 3$
dx dy

where: A the domain of flow (finite element).

(6.21)
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The stationary condition applied at all the nodes, leads to the

following system of equations:

[K] • {$} = {F} (6.22)

where: [K] = the permeability matrix

{*} - the unknown total head at the nodes

{F} = the quantity of flow.

In order to obtain a solution the following boundary conditions are

necessary:

1. At the boundaries of the flow region : known head, unknown flow

2. Within the flow region : unknown head, known flow.

The uncertainty analysis is carried out assuming that the coefficients

of permeability k and k are statistically independent and that the
x y

statistical characteristics of the known quantities k and k are ob-
x y

tained from a site investigation by means of an Inference model. The

objective then of this procedure is to establish the statistical charac-

teristics of the unknown head ». The following Algorithm is used to

this effect, as shown in the flow chart of Fig. 6.6.

ALGORITHM

Step 1 Set the permeabilities' mean values k , R (from the
x y

Inference model ).

Solve the conventional linear system

[K] {*} = {F}.

Step 2 Form the vectors

3[K] 3[K]

3k '3k,
x y

and solve the following two systems of equations:
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PROGRAM STFLOW

CALL DATA IN

CALL MESH

CALL BDWDTH

CALL FDRMEQ

CALL EQSOL

(READ INPUT DATA)

(EVALUATES BANDWIDTH)

(FORMS THE LINEAR
SYSTEM OF EQUATIONS)

(GIVES THE SOLUTION)

STOP

SUBROUTINE FORMEQ

USES DIRECT STIFFNESS PROCEDURE IN

ASSEMBLING THE STIFFNESS AND FLUX

FORM EQUATIONS AND CORRESPONDING
DEGREE OF FREEDOM

CALL LINEAR

COMPUTES PARAMETERS FOR THE UN-

CERTAINTY ANALYSIS

SUBROUTINE EQSOL

COMPUTES THE
AND SECOND ST

HEADS AND THEIR FIRST
ATISTICAL MOMENTS

CALL BANSOL

CALL VMULQF (I.M.S.L. LIBRARY)

COMPUTES VARI

OF VARIATION
ANCE AND COEFFICIENTS

SUBROUTINE DATAIN

READ NODES, ELEMENTS
BOUND CONDITIONS

SUBROUTINE BDWDTH

COMPUTER MAX MOCAL DIFFERENCE

SUBROUTINE MESH

GENERATES DATA FOR RECTAN-
GULAR REGIONS

SUBROUTINE LINEAR

COMPUTES ELEMENT STIFFNESS
MATRIX

COMPUTES DERIVATIVES OF
STIFFNESS MATRIX

COMPUTES RIGHT SIDE

CHANGE COORDINATE SYSTEM

SUBROUTINE BANSOL

SYMMETRIC BAND EQUATION
SOLVER

FIGURE 6.6 FLOW CHART OF PROGRAM STFLOW
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[K] |f - -flT
1 W (6.23)

[K] ||- = - H^M*} (6.24)

Step 3 Find the variance of * according to a previously defined

approximated relation, Eq. 5.19.

Program STFLOW is written based on the above algorithm. Triangular

finite elements are used and a special resolution scheme is adopted to

optimize the Central Memory space requirements.

6.5 Uncertainty Analysis of Initial Stress Conditions
Created by the Excavation

The initial conditions with respect to the dynamic analysis are

the result of the excavation of the cavity system that leads to a re-

distribution of stresses. A number of procedures were developed to

evaluate this redistribution, Obert and Duval! (64). However, the

finite element method has been most commonly used. This is particularly

true for the case of a nonlinear material behavior. Indeed the non-

linearity is approximated by assigning different values for the modulus

of elasticity and Poisson's ratio at each element, consistent with the

stress values of the element. The analysis is performed using an in-

cremental piece-wise linearization of the stress-strain relationship.

The excavation operation can be adopted from Clough and Duncan (10),

The following operations are defined:

1. The rock is assumed to be in equilibrium and at rest and the

initial state of stresses is provided by the Inference model.

2. The excavation is simulated as follows: the stresses before

excavation, on the surface of the opening are evaluated, as well as the
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equivalent forces at the nodes of the finite elements. Then, reversing

the signs of the forces and applying them to the finite elements sur-

rounding the excavation, the corresponding displacements can be evalu-

ated, using adequate tangent modulus of elasticity and Poisson's ratio.

3. The competed stresses, strains and displacements are then

added to the original values to obtain the final configuration of the

cavity system before the introduction of a dynamic effect.

The main problem encountered with the F.E.M. idealization for this

specific problem is the effect of the finite boundaries of the area of

interest. Indeed its location will influence the results obtained in

the analysis. A brief investigation showed that at a distance greater

than two radii from the opening the boundaries do not affect the

solution, Figure 6.7.

The uncertainty analysis is performed with respect to the tangent

modulus of elasticity and the initial Poisson's ratio for the state of

stresses obtained from the Inference model. Indeed according to re-

sults obtained by Kulhawy (50) the Poisson's ratio varies insignifi-

cantly with the increase of stresses, Figure 6.8. The following

Algorithm gives the adopted computational steps.

Step 1 Evaluation of first and second moments of the stress field from

the Inference model

.

Step 2 Computation of the tangent modulus of each element according to

the following relation given by Kulhawy (50).

1/E

E
t

= ~ R
f

- e* ( 6 - 24)

+
E
i

a
l

" a
3
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where: E. = initial modulus of elasticity

Rf = failure ratio

a
l

" °3 ~ Aviator stress

e axial strain.

Then compute the first and second moments of E., Appendix C.

Step 3 Resolution of the system

[K] {u} = {F} (6.25)

following the F.E.M. with the appropriate boundary conditions.

The load vector {F} is evaluated considering the effect of the

excavation.

Step 4 Evaluation of the quantities

a{u> 9(0}W ' 3v

according to the relations:

[K]
.||ui = |p.|M {5>

(6.26)

L J 9v 3v 3v
x J

Step 5 Evaluation of the stress tensor according to Zienkiewicz (97)

{a} = [D] • [B] • {u} (6.27)

where: {u} = mean value of the displacements

[D] 3 the elasticity matrix

[B] = the influence matrix.

Then, evaluation of the expressions:

9a , 3a_

3E 3v

according to
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H = HMBi
{

-
u}+[D][B] |fi ( 6 . 28 )

|£ = iMLBl
{ 5 }+[D][B ]|iil. ( 6 . 29)

Step 6 Evaluation of the variances of the displacements and stressed

using the first order approximation as defined previously,

Eq. 5.19.

The programming details are given in the flow chart of Figure 6.9.

6.6 Uncertainty Analysis Related to the Modal Dynamic Analysis

The equations of motion can be uncoupled and the solution of the

dynamic problem obtained by rearranging them in terms of the dynamic

modes of the modes of the system. This is done by solving a classical

eigenvalue problem from which the natural modes and the corresponding

frequencies are determined. The uncertainty is introduced through the

following physical parameters: the damping parameter and the natural

frequencies.

On the other hand the motion prescribed at the boundaries is not

uniform and phase differences exist in the motions at points located

across the boundaries of the cross section shown in Figure 6.10. The

motion perpendicular to the cross section is assumed negligible and

the dynamic response is assumed to correspond to a plain strain con-

dition over the examined cross section. Therefore, the prescribed

horizontal motion at the boundaries is given by the following equa-

tions, neglecting the vertical component:

uR (t)
= u(t - -£) (6.30)
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where: L„ = distance between adjacent nodes

V = mean velocity of the propagated wave

u
B

* horizontal acceleration at the basement.

A standard finite element procedure is used and the cross section

of interest is divided into triangular elements, Figure 6.11. The un-

known variables are the displacements at each node with an horizontal

and vertical component:

(d
t
(t)} = (u.(t) , v.j(t)} . (6.31)

These displacements can be decomposed into two distinctive parts

{^(t)} - {d*(t)} + {d|
N
(t)> (6.32)

D

where: {d.} = represents the displacement of node 'i' due to the

perturbation of the boundaries and could be considered

as a quasistatic displacement vector, and

IN
{d. (t)> = represents the inertia! contribution to the displace-

ment of the node.

Then, distinguishing the free nodes from the constrained nodes,

the latter being the nodes lying on the boundaries of the examined

cross section, the following equation of motion is obtained, (see

Appendix C in relation with Figure C.l).

[m
p

] {d™} + [K^] {d™} = - [m
F

] {d*} (6.33)

where: [m
p

]
= the mass matrix of the free nodes

[K, ,] = the stiffness matrix

{dp } = the inertia! component of the unknown displacement

vector

{dp} = the quasistatic component of the displacement vector.

145



150.0

TRIANGULAR

.0 25 .0 50.0 75.0 100.0

HORIZONTAL DIRECTION
125 .0 150.0

FIGURE 6.11 TYPES OF FINITE ELEMENTS

146



The above equaticr is valid under the following assumptions:

1. The damping ratio is defined as a function of the mode of

vibration, as specified in section 4.4.3.

2. The material is assumed to behave linearly during the seismic

perturbance.

Both assumptions are close to reality according to experimental evidence,

(56).

To proceed with the solution of the above equation, the normal mode

shapes and frequencies of the free vibration have to be determined first:

[m
F

] (dp
N

> + [K^] :{d*
N

} = (6.34)

By performing a judicious change of variables we can obtain the dis-

placement vector in terms of the natural modes of vibration of the

IN
domain under consideration. Writing {dp } as follows:

{dp
N

} » [A] {Q
p

}

where: {Q F
> is a dimensionless modal vector,

the free vibration equation of motion becomes:

{Q
F

> + [A]"
1

[a
2

] [A] cq
F
) = o

(6.35)

(6.36)

where: [a ] =
r

.

L mF J

The uncoupling of the above equation is achieved by means of diagonal i-

2
zation of matrix [fi ]. A theorem states that there always exists a

matrix [A] such that:

c;

[A]"
1

[n
2

] [A] = (6.37)
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Only the lower frequencies are expected to be of interest in our case.

The corresponding normal modes provide the node displacements in the

cavern's vicinity. Matrix [A] is defined in terms of these first

frequencies. Substituting in Equation 6.33, the following relation

is obtained:

[A]
T

[m
p

] [A] {Q} + [A]
T

[K^] [A] {Q} = -[A]
7

[m
p

] {dp} . (6.38)

Using the following simplifications:

CM] - [A]
T

[m
F

] [A]; [K] = [A]
T

[K^J [A]; {F} = -[A]
T

[m
p

] {d®}

and introducing a linear viscous damping coefficient as suggested by

Penzien (19), a set of uncoupled equations is obtained:

[M] {Q} + 2[M].u>.-£. (0} + [K] {Q} = {F} (6.39)
i 'i

where: u. - the natural frequencies, and

£. * the damping ratio for the corresponding natural frequency,

The general solution for zero initial conditions, and for each vibra-

tional mode 'i' is given by, Newmark (63):

•t -C--U.(t-T)

Q
1
(t>j"^J F

j
(T)e -sin -

d1
(t^).dx (6.40)

where: c^ = u^ (1 - &. )

2
.

Finally, introducing Q into Equation (6.35) and after adequate sub-

stitutions, the dynamic displacement vector is given by:

,IH, -
[^h f* r.,T

[*F ]
,-jb, /«r»i(t-T)

WPi = ^7 -i«;t'9" .f1n.,
d1

(t-T).dT. (6.41)

"B
The quasistatic component of the acceleration dp, can be related to

the boundary accelerations by an influence matrix [S] as follows:
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(dp) = [S] {dg} (6.42)

Matrix [S] can be obtained through a conventional static analysis.

Substituting into the above equation we obtain:

,IN [A]
{d

F
}
i

= :A]
i wr [m

F
] [S] " {d

B
(t "

n
)},e

L
-C^U-t)

sin uj .. (t-x)dx (6.43)

or

{d™}. = [A]. [B]T .{R.} (6.44)

where

[B]l - j^- [ra
F

] - [S] , and

L
-5iUi (t-T)

e sin aj..(t-x) dx .(Mt)}- ^- f{d (t - t)
}<

wdii B
v
B

The loading factor R. (t) can be computed either by Newmark's (63)

technique or by Wilson's (95) step-by-step integration in the time

domain.

The uncertainty in the evaluation of the dynamic displacements

IN
{d- } is induced by the natural frequencies of the system obtained

from the modal analysis and the damping parameters. A perturbation

technique is used to determine the variance of the natural fre-

quencies for each vibrational mode, in a similar fashion as Hoshiya's

(33) procedure. In the equation of free vibration, Equation 6.34,

we assume that to the physical quantities [nip] and [K.,] corresponds

a mean and a fluctuating component as follows:
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[m
F

] - [m ]. + I a
r

«
if

[m 3. ; 1 - l,n (6.45)
r=l

[K^i [K]
i

+ I 6
r

6
ir

[K]
i

; 1 = l,n (6.46)

where: 6- = Kronecker delta, and
lr

a,s = fluctuating parameters.

Assuming the fluctuating component of the stiffness matrix (K. ),

Eq. 6.46, to be negligible, the solution to Eq. 6.39 takes the following

series form, Bolotin (4), neglecting the damping term:

n n

r=l
r r u

r=l
r r

Substituting into Equation 6.39 (see Appendix C), the following expres-

sion of the variance is obtained for the j natural frequency:

VAR( Uj ) « I {(n
r )

a

2
• <£.} (6.49)

2
where: a = the variance of the fluctuating parameter a , and

ar r

T r
m

i
5

i

un ,- {Qn L i 1L 5

'J o m \
' r

(Qn>
_

w
0j

L ^0 J

j L n
u
nrj

L ^0

2 {Q >' [m
Q

] (Q
Q
>
j

The algorithm then follows the following steps.

Step 1 Evaluation of the quasistatic displacement vector

Step 2 Evaluation of the dynamic displacement vector performing

the modal analysis

Step 3 Evaluation of the statistical characteristics of the

natural frequencies

Step 4 Evaluation of the second moment of the dynamic stresses

according to:
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~= [D] [B] ~^— (6.50)

for j = 1 ,. . . ,n modes.

The detail of the computations is given in Appendix C. Program

DYNMODE is written conformal to the above conceptual basis. Triangular

elements are used and the computations are performed in the time-dcmain.

In the flow-chart of Figure 6.12 the details concerning the computational

organization is given as well as the needed input information.

6.7 Uncertainty Related to the Stability of the Liner

From the dynamic point of view it is assumed that the liner does

not have any effect on the surrounding the cavity media. Consequently,

at every time step a static analysis is performed to compute the ef-

fect of the rock media, subjected to a seismic perturbation, on the

1 i ner

.

The behavior of the liner is of primary importance. This is the

reason of adopting a geometric nonlinearity procedure leading to a

stability analysis of the structure.

As previously seen, section 6.3, the stiffness matrix of the

structure is given as a function of the displacements. Therefore,

the equilibrium conditions produce nonlinear expressions, forming a

system of nonlinear equations. This system of nonlinear equations can

be solved using Newton Raphson's iterative procedure (see Appendix C).

At the n iteration the following relation is obtained:

n

mi".!, {u
n+1

-u
n

} = (F) - {NK(u
n
)} (6.51)

J
I
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SUBROUTINE
DYNDIS

SUBROUTINE
UNCERT

PROGRAM OYNMODE

READ GEOMETRY OF MESH
ELEMENTS & NODES

CALL MASS

CALL STIFF

CALL STATDIS

CALL MFREQ

READ INPUT E.Q. SIGNAL

READ INITIAL STRESS FIELD

CALL DYNDIS

CALL STRESS

CALL UNCERT

STOP

RESPONSE OF NORMAL SYSTEM

EVALUATION OF DYNAMIC DIS-

PLACEMENTS

EVALUATION OF TOTAL DIS-

PLACEMENTS

SUBROUTINE EVALUATION OF ELEMENT
STRESS STRESSES FROM NODAL POINT

DISPLACEMENT

PERFORMS THE UNCERTAINTY
ANALYSIS INDUCED BY THE
DYNAMIC PARAMETERS, MASS,
DAMPING

CALL MOMENTS

CALL SSTRESS

SUBROUTINE
MASS

EVALUATION OF THE EQUIVALENT MASSES AT
THE ELEMENT'S NODES

SUBROUTINE
STIFF

EVALUATION OF THE STIFFNESS MATRIX AND
DETERMINATION OF THE HALF BAND WIDTH

SUBROUTINE
STATDIS

EVALUATION OF STATIC DISPLACEMENT DUE
TO A UNIT LOAD AT THE BOUNDARIES

CALL SOLVE

SUBROUTINE
MFREQ

EVALUATION OF NATURAL FREQUENCIES AND
MODE SHAPES

CALL BEING

EVALUATION OF INFLUENCE COEFFICIENT
MATRIX

SUBROUTINE
SOLVE

SOLVE LINEAR SYSTEM OF EQUATIONS USING
GAUSS ELIMINATION SCHEME

SUBROUTINE
BEING

SOLVE EIGEN VALUE PROBLEM

CALL RSBEIG (PURDUE LIBRARY)

SUBROUTINE
MOMENTS

EVALUATION OF THE STATISTICAL MOMENTS
OF THE NATURAL FREQUENCIES

SUBROUTINE
SSTRESS

EVALUATION OF THE STATISTICAL
MOMENTS OF THE STRESS

FIGURE 6.12 FLOW CHART OF PROGRAM DYNMODE
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n + h
where: [NK(u )] = the nonlinear stiffness matrix defined at the n

(F)

iteration

= the load vector

{u } ~ the displacement vector at the n" iteration.

If u is known then u can be determined by solving the above linear

system of equations. From Taylor's expansion:

3U
(6.52)

Furthermore, setting

t
n+1 n i j. r

n'^ .n+1, ., n+1 n,
, c -,.

{u -u } + {u } - iu } Xtu -u } (6.o3)

and substituting Eqs. (6.52) and (6.53) in Eq. (6.51) (Appendix C),

the following relation is obtained:

;

'!i!l|lH!il. x;iM^!i {iu} = {iF }
i 3U : 3U

(6.54)

If to a virtual displacement au the external loads remain con-

stant, i.e. aF = 0, then Eq. (6.54) represents the classical structural

stability equation.

Matrix \f-
—

-

-] is also known as the geometric stiffness matrix,
oU n-l

SNK( u )

Cook (11), and — reoresents a specific force due to initial strain
3U

conditions.

In our particular case the following simplification can be made:

mi£l±* m (6.55)

that is, the uniaxial force is proportional to the liner's mass. The

constant (C) can be eventually determined experimentally. Figure 6.13

gives an illustration of the various parameters.
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Setting A = \»c, Eq. 6.54 becomes:

{[K] - A
2
[M]} au = (6.56)

which is an eigenvalue problem, A being the eigenvalues.

The uncertainty in the analytical model is introduced by the

physical parameters characterizing the liner i.e. the mass and stiff-

ness.

As previously seen with the modal analysis a perturbation technique

is adopted here also. Thus the general shape of the structure in the

instable configuration is assumed to be of the form:

Au
1

= u. sin(AX) . (6.57)

The physical parameters are defined as previously in Equations

6.45 and 6.46, leading to the series forms for A and u.

:

U
i
=U

ci
+

kl
^ Ulik

a
k
+U

2ik
B
k

) (6.58)

A= A + ^ (L
lk

a
k
+L

2k
B
k

}
'

(6.59)

Substituting Eqs. 6.58 and 6.59 into Eq. 6.56 and comparing the

terms containing identical powers of tne parameters a and e, we obtain

the set of equations:

(
"A

"l
U
lik

+ K
i

U
Tik

}

J,
\ - {2A L

lk
m

i

u
0i

+ A m
i

U
0i

}

k
l

{

°k

(
' A m

i

U
2ik

+ K
i

U
2ik

}
j,

B
k

" {2A 4k ra

i

U
i0

+ K
i

U
i0

}

j,
S
k

(6.60)
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Matrices [UJ and [L
2k l representing the influence of the stiffness

and mass fluctuation on the eigenvalues A are computed in Appendix C,

The variance then of each eigenvalue is given by:

n
,2 2./, n2 2

k=l

VARCAj)- > ((L
lk)J<k

+ (L
2k)j^ k

> (6.6D

where: a , , a ,
= the variance of the fluctuating parameters a. and

1

'1
U
lk

m, 6,,.

(UJ. - °J ° " nk
- °* (6.62)

'Ik'j
2 {u

Q }j [;n
Q

] (u
o}j

and

'' k
l

5
lk

{unM I

k
r

5 , : {u
n
}.

(U), «-°J-^ ""- nk. Oj.^
(6>63)

J
2 A

0j
{u

0>]
[m ] {Vj

The algorithmic procedure is defined in the following steps.

Step 1 Prepare the input loads at every time increment

Step 2 Perform the analysis considering the geometric non-

linearity at every increment of time

Step 3 Find the most unfavoraole configuration of the liner's

displacement and perform the stability analysis

Step 4 Find the statistical characteristics of the eigenvalues

representing the stability factor of the structure

Step 5 Evaluate the liner's moments and their statistical

characteristics.

The flow chart of the corresponding program is given in Figure 6.14.

156



JE #

</> U u
0> •r- <a •

^» £ *— *J m 1-
4-> X E a. co <U <U
•r- O • co >> C -O
•J X S- T3 •r- CO i*- Ec •t- «*- &. X5 <*_ <Vm fc. O *— — E3 •4-> CO O <- fO +J
o- •Q CO U

E UJ
C x: U1 T3

X o C
p— Q..— c •^ c— <4- O3 c m o s_ en O <->

<4- O O -O •^ 4-> ai
0) •<-••-> o +j <o c • co
«/> J r— o c r- c3 m en en

E 3
c
3 >> 1/1

X T3

CO s- o «- 1_ Ul <oV O CO 4J >a at
«-> «_ oj — c UJ X3 CO .— f— <4- r— >- S- -r-

O. C A ID <»- 'r— <*- <U i-
E <o <o u a> X C 4->

O i- c o o 3 u <u <oo i— at >— t_> <: on O E

UJ
ac z
2 •—

•

to _i z
i— co *— »— <t U.

«s 3 z o -j CO Ll_
Q. S2 o UJ o »—

•

=> O _J »—
• CO »— U. o CO

</) 3
to

\
g

5o
or
CO

1 UJ
u. lO _» z

s
2

to *—

1

t— «£ u.z o _j CO u.

2 UJQ o
_J »—

to
_J
_» _j _i

-J
—J —1 -j

—j _j «K _J -j

5 t_» o

to
to

o
cc
CO

•a
c
o

o
£3

o
CO

c
or
CQ

3

en
c

o
CO
I

ITS

CO

o
to

CO
Z2

3 C
o o

C9

CL

>-
Ci
«3.

cc CO
CO oc S_
ai —* O3 ! 4-J
^~ U
to Ll.' o>> Zl >

ts az c oc c
•—

•

cu ZD at
UJ en a. •zr>

CO •^ •t—

<u <u
UJ

•^ ci-
»—

I

o <-D o
t— *~

i

=3 c 1_J co o CQ o
or •^ 1^1

CO 4-> CC •->

=> <o <o
ir. 3 _J 3

^~ —

1

r—
ID -a: It)

> <_) >
UJ

1

Ul

1

C M
o a*
•^ ^^ c/»

»-» X (A
(O •»- «
^- i- Z3 *>

o <u
u. c -o

«n O OM (/> •»- Z
o c <o a»
«i- «- 3 ^:
•— <- r- ••->

tt*r- (t»

E *-» > *J
•-< c/) UJ to

s

5-b
4-> at3V
»— CO

3O

01

O xs
o

C k
o o.

*-> CD
3 3
O K>

i.
41
O

at c

»>4 z
Z3o
co

UJ
s»
_jo
1/1

o
»—z
cc
D.

—1<
_J
-J

_i
—i<

-J
—J
«c

-J
-J<

CO
Lvi
>-

t3Z
UJ
CO

t—

UJ
<_>z

1

c_>.

—i
—j

Q.O

"O
L.
O
o
u
ID

CO

»— CO
ec >)
UJ •o to CDz c

s3 <o
J=

UJ >. uZ *J CO
•—

*

c
H- r* c
r> <a oo *->

cc L !->

CO 0) A3
.a co

c j- »—
3 3 Z

+J UJ
co i- S
E 0) O
«- o. 3:
o
•<- m _j
I. —I
01 o <
O. +J o

CO
aiu
c
UJ

L.
ia
>
"O
c
«>

co CO
c cu
ia 3
a> r—
E IO

>
<<-

o c
a>

c en
o •—
•r- CO
**
ITS ai
3 j=
^~ *j
ia
> "-
Ul o

UJz
»—

o
ae
CO
=3

CO
t—z
UJ

o
at

CO

or

CO

CDo

<c

3O
_l
u_

cm

CD

157



6.8 Remarks Concerning the Given Computational Scheme

The main goal in the proposed scheme is to perform an uncertainty

analyses with respect to the physical parameters. This is done by

means of the modal analysis. It is particularly well fitted to our

problem because of its moderate central memory storage requirements.

The dynamic interaction between the rock and the liner is con-

sidered to be negligible because of the corresponding vibrating masses

are disproportional . Therefore, only the very high frequencies are

affecting the interaction phenomenon - a situation which never takes

place during earthquakes.

On the other hand the static interaction is considered in its

most simple form since the dimensions of the opening are much larger

than the thickness of the liner. Under these conditions the liner

would rather act as a membrane requiring, therefore, a stability

analysis.

The input seismic load necessary to perform the previously

mentioned computations is evaluated in the following chapter. Finally

in Chapter 9 a complete treatment of a case study is provided along

with some additional details concerning the sequence in which the

computations are performed.
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CHAPTER 7

MODEL PROVIDING THE INPUT SEISMIC DISTURBANCE

7. i Introduction

A model for generating earthquake accelerations was seen to be

necessary in section 3.5. Indeed a two degree of freedom system was

considered sufficient for simulating the vibration of tne cavity under

a seismic perturbation. One of the degrees of freedom is assumed to

represent the behavior of the media surrounding the opening. It is the

a priori component of the model . On the other hand the second degree of

freedom constitutes the a posteriori component which links together the

vibrational mode of the examined cavity and the expected earthquake

signal at the surface of the earth.

The analysis proposed in the subsequent sections is based on the

following physical parameters: the natural frequency and the damping

ratio. They constitute the basic elements of the model. In what fol-

lows the detailed derivation of the a priori, coupled with the a pos-

teriori component is given, as well as a brief parametric study of

the physical parameters, that enable us to define the limits of applic-

ability of the model. The a posteriori component adopted here is the

one developed by Ruiz and Penzien (80). Their fitting parameters and

analytical results are used for the generation of the earthquake sig-

nal. Finally the retained sequence of operations and the obtained ac-

celeration signal are presented both at the earth surface and at depth.
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7.2 Analytical Treatment of the Model

The main objective in defining the a priori characteristics of the

model is to obtain the scale factor to be applied to the acceleration

at the earth's surface so as to obtain the acceleration signal the

depth of scale one as defined in section 3.2.3. Clearly the input ac-

celeration to Scale One must be influenced by the size of Scale One ana

its physical parameters. To simplify the analysis Scale One is assumed

to represent a discrete vibrating mass M, connected with the cavity

base through a spring of constant K and a dashpot with a damping ratio

E. This approximation seems to be close to the real behavior of the

media, at least as far as the first vibrational mode is conceived.

Indeed, the rock mass enclosed in Scale One bound by faulting systems,

vibrates as a discrete entity. The above heuristic argument is to a

certain extent confirmed by the real data of recorded earthquake sig-

nals (see Figures 3.6 'and 7.1).

However there are several physical constraints that influence the

vibration of mass M, which can be difficultly quantified. One such

constraint could well be the damping effect of the faulting system, or

the effect of the surrounding Scale One media, etc. Therefore an a

posteriori component possessing a mass m, a spring constant k, and a

damping ratio s, is coupled in series with the above mentioned a priori

component. The related equations of motion then are given by Equations

(3.5) and (3.6). After a few computational simplifications, these

equations become (see Appendix D)

:

Mx + Cx + Kx + c(x-z) + k(x-z) = -My (7.1)

mz - c(x-z) - k(x-z) = -my (7.2)
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Now setting: M = 5 = tne mass ratio

2 k
w = — = the natural frequency of the a posteriori
n m

component

2 k
ft = j7 = the natural frequency of the a priori component,

(value obtained from the modal analysis of scale

one

)

c = 2 £ m oj = the a posteriori damping coefficient

C = 2 E M ft = the a priori damping coefficient

C = the a posteriori damping ratio

H = the a priori damping ratio

the following expressions are obtained:

x + 2(5)(fl
n

) x + (njj) x + 2U)(a)
n

) M(i-z) + ^ M(x-z) = -y (7.3)

z - 2U)(u
n
>(x-z) - ^(x-z) = -y (7.4)

which represent a system of linear differential equations with x and z

being the unknown variables, and y the acceleration of the cavity base,

as shown in Figure (7.1).

Making use of the Fourier Transform technique, and working in che

frequency domain the amplitude of the transfer functions of the sys-

tem of two masses previously specified, are: (see derivation in

Appendix D)

For the A Posteriori Component

I

|Z - l « n m
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where: j = imaginary unit

and

J.
A = (^T)(^-l) - J

n
M 4(0( S )(Q

n
)( Un )

,2 2 n
B = j2;c(^-^) • (~) - c(«o

n
) « - M + (5)(r.

n
). u (-£ -1)

Equation 7.5 is also known as the complex transfer function H(>)

zi
2

_ „„, ll2
j|

= |H(j«)r.Indeed

For the A Priori Component

|y
D'

y|
"
=

i

HD^) (7.6)

where: D = (r<
n

)

2
+ 2j(s)(a

n
)(u) - u>

2

As it can be observed from Equations (7.5) and (7.6) the amplitude

of the transfer functions are dependent on the following four parameters

M
M = the mass ratio -

m

£,E = the damping ratios of masses m and M respectively
n

and F = the freauency ratio —
u
n

These quantities constitute the input to Program EQGEN implementing the

above scheme. The corresponding flow chart is given in Figure 7.2 and

the computational details in section 7.5.

The transfer function given by Equation 7.5 is illustrated in

Figure 7.3. Interestingly enough, it has the same shape as the one-

degree-of- freedom transfer function defined by Ruiz (80), based on a

simple a posteriori technique. It seems appropriate then to adoDt his
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PROGRAM EQGEN SUBROUTINE EQ

READ INPUT INFORMATION

- Evaluation of Transfer
Functions

RETURN

CALL EQ

¥

CALL MAXASP

CALL APRIOR
SUBROUTINE MAXASP

- Performs Parametric Study

- Determination of Range of
Maximum Accelerations

CALL APOSTER

CALL PLOT

STOP
tnu

SUBROUTINE APRIOR

- READ Natural Frequency of
Cavity System

- Computation of Magnification
Factor between Surface and
Cavity Depth

SUBROUTINE APOSTER

^- Generate Intensity-Time
Function

- Generate Shot Noise

- Filter the Shot Noise

^

SUBROUTINE PLOT

CALL FOURAN PLOTS THE ACCELERATION
VELOCITIES AND DIS-
PLACEMENTS OF THE
GFNERATED EARTHQUAKE

SUBROUTINE FOURAN

Performs the Fourier
Analysis

Filters the Unwanted

Frequencies

FIGURE 7.2 COMPUTATIONAL SCHEME OF TrtE EARTHQUAKE GENERATION MODEL
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values concerning the governing parameters m, k, and ui for generating

the earthquake signal at the surface of the earth. On the other hand

a scale factor is used to evaluate the corresponding earthquake signal

at the level of the cavity. This factor is determined by Equation (7.6)

Simply speaking it is the ratio between the maximum acceleration at the

ground surface and at depth.

Ruiz and Penzien defined their a posteriori model taking into con-

sideration the random nature of the earthquake phenomenon. In the fol-

lowing the adopted statistical assumptions are presented as borrowed

from their analysis (80).

7.3 A Posteriori Component

The most commonly used practice is to consider a gaussian nonsta-

tionary shot noise to represent the earthquake acceleration. This pro-

cess simulates the effect of random pulses arriving as seismic waves.

The nonstationarity characterizes the variability of the random inter-

arrival times of the above mentioned pulses. The acceleration at the

cavity's level is evaluated by passing the above mentioned gaussian

shot noise through the filter that constitutes the previously defined

two-degrees-of-freedom mechanical model. The process is completely

defined as soon as the model's parameters are known as well as the vari-

ance intensity function $(t) of the shot noise. These parameters must

therefore be representative of a specific site location in order to

generate earthquake records corresponding to earthquakes occurring in

similar geologic conditions, namely epicentral distance and magnitude.

Following this general order of ideas the natural frequency (w
n )»

the damping ratio U) and the variance intensity function U(t)) are
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estimated in such a way as to give the best fit to known past seismic

records. Formally the output process in the frequency domain can be

expressed as

:

z(ju)) = H(j«) • y(juO (7.7)

where: z(ju) is the output process

y(ju) is the input process

H(jw) is the complex frequency response function of the filter

as previously defined.

In the time domain, by the inverse Fourier transform we obtain:

z(t) = y(t) h(t-x)dz (7.8)

where: h(t) is the unit impulse response function of the filter.

Since the excitation process is assumed to be gaussian, the output pro-

cess will also be gaussian for our linear system, and thus fully de-

scribed by its covariance function:

Cov
2
(t

1
,t
2

) =
(

J

Cov (Tr T
2

) • h(t
1
-r

1J
• h(t

2
-x

2
)dr

1
dx

2
(7.9)

But: Cov
y
(t

1
,x

2
)

= <(i(t
1

) eix^ (7.10)

where: 5(x,) is the Dirac delta function

4>(x,) is the variance intensity function of a shot noise pro-

cess equal to:

(tj) = u S
Q

p(t
x

) (7.11)

where: S
Q

is the power spectral density function.

The following values are taken from Ruiz (80) as well as Tajimi (65)

for the above mentioned fitting parameters:
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Natural frequency u>
B

(4f.8 to 5.0)tt

Damping ratio a 0. 6 to .62

Variancei intensity parameter *0
* 5. 1 x 10

-5
sec

Fitting constant c = 0. 15 sec
-1

»0
s 5. sec

7.4 A Priori Component and Parametric Study

The parameters defining the a priori component are the natural

frequency n of Scale One, and the damping ratio e. The natural fre-

quency a is evaluated in the modal analysis of the cavity system and

its range varies between the following values:

Case of a Shallow Cavity
Q
n

7.76 25.6 32

F 1.55 5.1 6.4

Case of a Deep Cavity
% 9.48 27.42 35.46

r 1.89 5.48 7.09

Hertz

Hertz

The damping ratio 5 is dependent on the behavior of the rock environ-

ment. It can be estimated from in situ tests as suggested in Chapter 4

However all the existing studies consider H to lie between 0.05 and

0.25.

At this point the frequency ratio F - — can be evaluated leaving

the mass ratio M = - to be the only undetermined parameter. Its deter-
m

mi nation is at least difficult, if not impossible. Indeed how can any-

one, accurately evaluate the mass M of a rock medium contained within

an area of one square kilometer. Moreover, the equivalent mass m is

even more difficult to determine. Therefore a parametric study is
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rformed to observe the influence of this parameter in the evaluation

2
f the transfer function |H| . The results are illustrated in Figure 7.4

s obtained from Subroutine MAX. As it can be seen, the influence of M

is small for the range of F values between 1 and 4 and for damping

ratios of c = 0.05 and 5 = 0.05. It can be concluded then, that the

important parameter influencing the evaluation of the transfer function

2
|H| is the frequency ratio F. Figure 7.5 shows the results obtained

for the transfer function when F varies between 1 and 3.

Interestingly enough, for values of the Natural frequency fi of

the a priori component, three times larger than the frequency u of the

a posteriori component, the surface measurements can not be used to

estimate the accelerations at depth, which is in concordance with the com-

mon sense. On the other hand, for F ranging between 0.8 and 1.3, - a

much more realistic case - the surface motion can effectively give an

indication of the underground movement.

At this point all the elements exist to procede to the generation

of earthquakes signals.

7.5 Generation of cseudo- Earthquakes

The model described so far follows Ruiz's procedure of filtering a

digitally obtained white noise. Indeed, a sequence of white numbers

possessing a gaussian distribution with a zero mean and a unit variance,

is commonly obtained from the following expressions:

n, = (-2 nn p.)"*5 * cos (2* r- +1 )
1 1 1+i

(7.13)

n
i+1

= (-2 *n r.)~ 2
* sin (2tt r

i+1 )

where: r. is a sequence of independent random numbers uniformly dis-

tributed in the interval (0,1).
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AT SURFACE
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FIGURE 7.5 TRANSFER FUNCTION (H)
Z

FOR DIFFERENT VALUES OF THE FREQUENCY
RATIO F
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The nonstationarity is obtained by multiplying n. by a shaping function

SF(t) which is defined in terms of the variance intensity function <t>(t)

(given in Equation 7.12), as follows:

SF(t) = kit)
-»s

IF S
Q

(7.18)

where: S
Q

is the intensity of the white noise.

Finally the input to the model is provided by the following expression:

y(t) = *$-
2

n(t) (7.19)

If initial conditions of zero velocity and zero displacement are

assumed, then the acceleration at the cavity's depth can be expressed

as the convolution:

x(t) =
I y(t) . h

D
(t~r) dz (7.20)

where h^t-r) is the inverse Fourier transform of the complex transfer

function H-Jjoj) defined by Equation 7.6.

It is to be noticed that the a priori component is present only

through the function h
D
(t) and acts like a scale factor of the geologic

environment, while the a posteriori component both, influences the vari-

ance intensity function $(t), and scales the pseudo-earthquake accord-

ing to recorded earthquake signals.

The last operation consists of decomposing the obtained pseudo-

acceleration into two signals according to the scheme suggested in

Chapter 3. Such a decomposition is illustrated in Figure 7.6, in which

the low frequency content and the high frequency content signals are

plotted. The low frequency content signal constitutes the input accel-

eration for Scale One, while the high frequency content signal provides

the input to Scale Two. The results of this procedure, Figure 7.5,
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exhibit an overall similarity with the work of Kanai et a!., (45).

Specifically they represent the frequency distribution of the acceler-

ation signal by plotting the number of 0-line crossings of the signal

vs. the length of the corresponding time intervals, Figure 7.7. It is

believed that there exists a direct analogy between the numbers o f

0-line crossings and the transfer function of the signal, while fre-

quencies and periods are related by an inverse relationship. An inter-

esting similarity is thus seen to exist between the proposed generated

signals and observed earthquake signals.
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OBSERVED EQ. SIGNALS (after Kanai (45))
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CHAPTER 8

EYALUATICN OF DESIGN ALTERNATIVES

8.1 Introduction

The analytical model defined in the previous chapters provides the

required quantification to evaluate the performance of a given

cavity system under seismic conditions. However for a given geologic

site and an expected earthquake perturbance many engineering alterna-

tives exist. The need is then to justify the selection of one of these,

based on a number of criteria. Strictly speaking this is an optimiza-

tion problem in the general sense of the term. It is recognized though

that for large engineering projects it is difficult to incorporate in

an optimization scheme the great amount of detail and complex mecha-

nism involved in the physical -engineering system.

A way around this difficulty is by using accumulated experience

and technological knowledge to identify an exhaustive list of perfor-

mance criteria to make possible the comparison of different classes of

technological alternatives. Finally a sorting among the discrete

number of alternatives permits their listing in a decreasing order of

attractiveness. The sorting of the cavity system alternatives can be

performed on the basis of the merit of each alternative as summarized

by a performance profile over the previously mentioned criteria. A

computational scheme performing such a "sorting" operation exists in

ELECTRE developed by B. Roy (79).
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The- two ma:or Fteps in implementing the ^bove sorting scheme arj

primarily the determination of all possible technological alternatives

for the engineering project at hand, and the definition of adequate

criteria of selection. These steps are essential in orcer to obtain a

sound alternative selection. They are presented in the following sec-

tions for the case o~ underground cavity systems.

8.2 Classes of Alternatives for Cavity Systems

There are three specifications in cavity systems tnat permi : iso-

lation of tne possible classes of alternatives, namely the geometry of

the opening, the structural system for the stability of the opening,

and the depth of excavation.

Two geometric configurations typical of existing underground

facilities are retained here for the cavity system: The horsesnoe

shape and the circular shape.

The systems most commonly used to maintain stability of the

opening are a simple concrete liner or the combined system of a con-

crete liner and rock bolts.

Finally an important decision concerns the depth of excavation of

the cavity system. In this study only a shallow cavity system will be

compared to a aeep one. Both locations are anticipated tc offer advan-

tages and drawbacks.

A combination of the above proposed possibilities leads to a total

of eight different alternatives. This number does not represent an

upper limit of all possible different alternatives. It is only selected

for convenience of the analysis. However is is emphasized that the

retained alternatives must represent a set of
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homogeneous equal candidates. Each such alternative should optimally

satisfy a given number of specifications such as cost-effectiveness,

efficiency, level of reliability etc.

8. 3 Classes of Criteria o T~ Selection

All human activities ultimately can be described as a sequence of

consecutive decision-making processes of varying importance, parties

interested, extent of impact, etc. This is particularly true fcr large

engineering projects whose impact may be felt over a large portion of

society not tc mention the natural environment itself Appropriately

then the final decisions over such issues impinge on the collectivity

oy means of decision-making bodies, agencies etc. While engineers can-

not be substituted for these decision-making bodies, the engineers'

role is becoming increasingly important in providing necessary, rele-

vant and adequate information about the project at hand. Indeed, dif-

ferent levels of decisions can be recognized, from the basic decision

of whether to accept a project or not, to detailed decisions about a

specific component. Accordingly, different sets of objectives and cri-

teria suit the different levels of decisions. An example of such cri-

teria of selection can be taken from the following partial list:

economic, technologic, aesthetic, environmental impact, flexibility,

and even political. Obviously engineers are primarily involved with

the technologic criteria. Yet, limited as the list of technologic cri-

teria alone may be, the associated decision process remains complex,

further complicated by the accumulation of knowledge in the intangible

form of experience. This study attempts to rationalize the traditional

engineering judgement based on knowledge and experience.
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From the technical point of view $
the performance of a given engi-

neering project can be described or characterized by a number of param-

eters generally defined as attributes. A number of these attr:butes

can be retained to be used as criteria of technical performance. Fcr

the case of the performance of underground openings three cattgor-ias of

such attributes can be distinguished, namely, the initial physical con-

ditions, the dynamic response of the cavity system, and the reliability

attained at different points on the well cf the opening. More specifi-

cally, for each category the following attributes are retained:

a. Initial Physical Conditions (Static Analysis;

R.Q.D. - Rock Quality Designation,

Stress field created by the excavation, and the corresponding

Stability Factor of the liner

b. Dynamic Response (Dynamic Analysis)

Natural Frequency of the cavity system,

Input Dynamic Signal, and

Maximum stress level reached during the earthquake

c. Reliability Conditions (Conventional Approach)

Safety Factor at the walls of the opening

Safety Factor at the roof of the opening

The previously mentioned subjectivity in an expert's judgment,

attributed to his accumulated experience and resulting in a different

value attached to each one of the above attributes, can be quantified

by means of a set of weight coefficients. Moreover, two components for

each weight coefficient can be imagined, the one heuristic translating

the expert's experience and intuition, the other deterministic
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translating the expert's 'confidence 1

in the numerical prediction or

estimation of every speci ric attribute. This is particularly true for

parameters having a statistical character as is the case for the per-

formance of the cavity system under seismic conditions. Such 'confi-

dence' can be quantified by means of the coefficient of variation of the

corresponding attribute. Alternately, the notion of entropy, as used in

Information Theory (97), can provide, a measure of the above 'confidence',

Summarizing, the weight coefficient W(p) attached to attribute p is

given as follows:

W(p) = H(p) 9 CVR(p) (I)

where: W(p) is the weight coefficient of attribute p

H(p) is the heuristic component of the weight coefficient of p

CVR(p) is the deterministic component of the wieght coefficient

of p, for example coefficient of variation of attribute,

or entropy of attribute,

9 denotes a law of composition of the two above components.

Simple addition is self-justified in the case of weight

coefficients.

8.4 Formalization of Scrtinc Algorithm

The proposed procedure can be described as a "multi objective opti-

mization" or as a "choice with multiple criteria." The latter descrip-

tion shows that the method proposed by 3. Roy (79) can handle also

qualitative information.

In order to describe the algorithm that is used in the searcn for

the more adequate structural configuration for the cavity system, first

the problem components have to be defined.
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8.4.1 Problem Components and Nomenclature

The problem components, nomenclature and proposed procedure, is

g^'ven in point form as fellows:

1. A set cf n' alternatives

(Ar A
2
... s A

R
)

= (a;

As sucn is considered the discrete sequence cf alternatives as

deemed at the beginning of this chapter, ore of which has to be

selected upon its. performance over the selection criteria.

2. A set of 'm' criteria

' C *1 "i

(Pi. Pr>» Pm )
=

( P) (3.3)
'V K 2' r m

They are extensively defined in section 6.3.

3. The application of the 'm' criteria to each of the 'n' alter-

natives proouces the multidimensional profile of performance of the 'n'

alternatives at hand.

4. The relative importance of the criteria is expressed in terms

of a weighting coefficient W(p), p = l,...,m.

5. An ordering y among alternatives, according to criterion p is

defined as a mapping

V ^ "* K
P

P
=

l *~'m ' (3.4)

K being the change line ordering according to criterion p. The ele-

ments and procedural steps of the method being given above, the goals

of the method are two-fold:

1. Pennit the selection of the "best" alternative (A.;

2. Produce a finer ranking of the top alternatives so that

the introduction of new criteria will permit the ultimate

selection of the "best" alternative.
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8.4.2 Outranking Relation and Basic Assumptions

The method used to achieve the above tvvo goals is to

determine a partial order stronger than the product of the 'rc' complete

orders associated with the 'm' criteria.

Such a partial o^der is achieved in the present algorithm by ce-

f'im'ng an outranking relation R, such that a dichotomy operated on

the set of alternatives (A.), the one subset called the 'core" or

"kernel'
1 containing a small number incomparable among themselves but

altogether better than the remaining subset of rejected alternatives.

The outranking relation R is defined in three successive steps oevelcped

hereafter. It is based on the concord and discord indices conceot wiiich

is central to the whole method.

Step No. i . It can be shown (7S), that the complete orderings v

according to criterion p form one "oriented graph" G ~ (A, U ) whose
P P

nodes represent the alternatives (A.) and the arcs U are defined bv:
J P

Arc (A., Aj) e U
p

if and only if y
p
(A

i
)

> Y
p
(A,)

that is arc A. * A. signifies that alternative A. is higher ranked than

A.. There is one such graph for each criterion p. These complete

order graphs display the properties of transitivity and completeness .

Step No. 2 . At this point, the 'p' G graphs need to be reduced to a

unique graph G = (A, U) synthesizing the p different criteria.

First we notice that all orders A. * A. satisfying all 'p' criteria

(unanimity condition), belong to G(A, U)

:

(A., A.) £ U
p

V p = l,...,m - (Ar k.) e U
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In fact. th"S partial order unanimity graph G
Q

= (A, LL), where
n

U
n

=
fj

U , is a subset of G = (A, U) containing an extremely small

p=l
p

number of alternatives. Often times there is no alternative satisfying

the unanimity condition. This is a serious "imitation overcome by

defining indicators of concord or discord among the different criteria,

allowing relaxation of the too stringent unanimity cordition. To this

effect, a Concord Index and a Discord Index are defined as follows:

Concord Index c ... It is meant to measure how well the hypothesis

is that alternaiive A. outranks alternative Aj. It is defined as the

percentage of criteria in favor of the above hypothesis:

7 W(p)

'ij-*^ ^
I W(p)

P-X

where: C(i,j) is the class of criteria according to which A. out-

ranks A^

W(p) is the weight coefficient of criterion p

The Concord Index c- displays the following properties:

-< Cij S 1

c. = i -m. fA., A.) e U~
!
-
b - &)

Discord Index d . .(s). It is meant to measure how strong the oppo-

sition is, to the assertion thai A. outranks A.. Designating by D(i,j)

the class of criteria according to which A. does not outrank A., the
i j

Discord Index is defined as:

d .(s) = the s element of the decreasing ordered set T
1 w

T= <V rp= P
RMAX

P ^^ <
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where: y d
(') - scale value appreciation of alternative A. according to

criterion ' p'

RMAX - absolute max scale range among all criteria

For a pa'r of alternatives A., A. satisfying the unanimity condition,

we have:

D(1,j) - ? - (A,, A,} £ Un
«- d._. = G

also
vS - 8

'

* 6-.{s) < 1

Step No. 3 . On the basis of the two indices introduced above, the out-

ranking relation R is defined as:

A, R A. I c.. > p; < p < 1, close to 1

2 M ''and lj
(3.9)

(A. outranks A.)j d.. < q; < c < 1, clcst to
• J i i 'J

and the associated graph G(p,q,s) = (A,U(p,q,s)) defined sc that:

(A., A.) t U(p,q,s)-*-». (8.10)

It is to be noticed that the outranking relation R is defined in

terms of three parameters, namely p, q and s, which permit parametric

calibration of its severity.

The following properties can be readily established:

1. If p i p' , and q £ q' , then G(p' , q
!

,s) <= G(p,q,s) that is,

p'. q' is a more restrictive set of parameter values.

2. G(l,q,s) = G(p,o,s); V s (unanimity graph)

3. R is not transitive, that is

A. RA.; and A. RA. -h A, RA.
1 J J K ; Is

4. The graph G may not be complete, that is circuits might appear,
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5. Reducing the value of ' p' is equivalent to relaxing the

requirements of agreement among criteria, concerning the

hypotheses A. -* A ..

6. Increasing the value of q is equivalent to relaxing the re-

quirements concerning the discordance of the above hypothesis.

Having at this po
: nt obtained a unique graph (G) (not compete and

not transitive), reflecting the outranking relation R and operating a

synthesis of the 'n' complete and transitive graphs of each criterion,

tne next task is to extract from this G the core or kernel containing

in a classified order the definitively best alternatives.

Defining the core {or kernel) of the graph G(p,q,s)

The core 'S' of a graph is the subset of nodes (alternatives),

satisfying the two following conditions:

1. External stability

V A, e {A - S}, A. e S sucn that (A., A.) e U(p,q,s) (8.11)
J * J

In ether words, all eliminated alternatives are outranked by at least

one alternative of the core.

2. Internal Stability

V A . £ S and V A
k

e 5: (A., A
fc

) i Y(p,q,s) (3.12)

in other words, no alternative of the core is outranked by any other

alternative of the core.

Since a complete and circuit-free graph admits one and only one

core (kernel), eliminating the circuits from the graph G(p,q,s) is

equivalent to "shrinking" or reducing the original graph G into G'

whereby the circuits, as formed by equivalent alternatives are elimin-

ated. The reduced graph G' then admits a unique core containing the

184



ultimately best alternatives. Consequently the strategy followed in

ELECTRE consists cf establishing the outranking relation R and the cor-

responding graph 6, identifying and eliminating the circuits reducing

3 to 6' and finally isolating the core or kernel of the reduced graph

G'. This is shown in the flow chart of Fig. 8.2.

The basic assumptions required in the above procedure are summa-

rized as follows:

i. Tne different criteria of performance assume a certain hier-

archy of importance translated by a set of weight coefficients

2. By means of these weight coefficients, the above criteria be-

come comparable.

3. Moreover the criteria are assumed to be additive!;/ comparable

for the purpose of defining the outranking relation.

4. A complete order of preference is assumed to exist for e^ery

criterion individually.

5. All criteria are assumed to admit a scale-structure , even

though it may be a qualitative one.

8.5 Example of Application

Following the general ideas displayed above a hypothetical example

is given here, as introduced in sections 8.2 and 8.3. It is only meant

to provide a clear illustration of the program's implementation. A

more complete case study is presented in Chapter 9.

All the elements of the study are presented in Figure 8.1 for hypo-

thetical values. Only five criteria are taken into consideration among

which the safety factor of the roof exhibits the least variability.

Indeed the mean value of its coefficient of variation is the smallest
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FIGURE 8.2 FLOW CHART OF PROGRAM DELECTRE
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and therefore its corresponding weight coefficient is large. On che

other hand the natura" frequency of the structure exhibiting trie

largest variability assumes the smallest weight coefficient.

Another way to determine the weight coefficients attributed to the

different criteria is by means of the entrcoy of information as sug-

gested s n section 8.3. It is given by the following expression

r
E = -, p(f) loc p(f, df ''8.13)

where p(f) is the probability density function of f. f is a ranoom

variable characterizing the criterion under consideration. At tM:

stage p(f) is unknown. It is determined according to the following

maximization scheme (Maximum Entropy Criterion).

Maximize E subject tc the following three constraints.

mCO

1.
j

p(f) df = 1 (8.14)
i — GO

)

2. p( f
) f df = f (3.15)

J -co

! P(f) {f-f)
Z

df = -I (8.16)

_ 2
where f is the mean and c- the variance of the random variable f. Both

these statistical estimates are provided by the uncertainty finite ele-

ment analysis. The computational details of the above maximization

problem are given in Appendix E. The probability density thus obtained

is seen to be normal

.

The corresponding maximal entropy is given by Eq. E.5. At this

point each criterion has a particular maximal entropy value for each
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one cf the design alternative?, under consideration. Therefore it seems

plausible that the randomness of each criterion be reflected by the

mean value cf the entropy over the different design alternatives. Thus

the previously mentioned weight coefficients attributed to each cri-

terion can be determined making use of this mean ^alue of the entropy.

A low weight coefficient corresponds tc a high entrooy value: and a high

weight coefficient corresponds to a low entropy value.

In other words the weight coefficients provide a measure of the confi-

dence that one has to every specific performance criterion.

It was noted earlier that for the particular values of the trip-

let (p,q,s) of (1,0.1), the graph G was reduced to the unaminity graph

G
Q

. It is then appropriate to use a number of combinations of p, q,

and s so as to obtain a number of results corresponding to different

levels of relaxation of the ordering relation. Such an example is

shown in Fig. 8-3 where ELECTRE was used in conjunction with the above

illustrative example for the two sets cf values of (p,q,s) of (.66,

.40, 1) and (.60, .30, 2). The effect of relaxation of the outranking

relation is clearly illustrated. In fact a complete and orderly sen-

sitivity analysis over the range of possible values of the parameters

p, q, ano s would seem necessary so as to qualify a final choice for

the 'best' alternative by a measure of the statistical confidence of

sucn a decision, as illustrated in Fig. 8.4.

Finally, it must be stressed here that the goal of the above pro-

cedure is not merely to give an answer to a decision problem, but

rather tc provide a general and justifiable methodology for handling

rationally, often complex engineering decision problems.
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CHAPTER 9

EXAMPLE OF APPLICATION OF THE MODEL

The treated example is inspired from the following case histories:

1. The Poatina underground power stations in Tasmania (21;,

2. The Swedish power producers study (33).

The main body of data concerning the physical parameters of the rock

media are taken from the proceedings of the Johannesburg conference on

site exploration (27).

9.1 Geologic Structure of the Site

The power station is located at the foot of a well defined and

steep escarpment (Figure (3.4)). The strati graDhic investigation re-

vealed a thick sandstone forming a- resistant cap overlying horizontally

bedded mudstones and siltstones.

The main fault foming the original escarpment has a lengtn or

about 1 km and follows a N-NW trend. Also in the area there are a num-

ber of smaller faults that follow this same direction and a further

group of faults with aN-Etrend.

An exploratory shaft showed that the rock throughout the 200 meters

depth was stable and competent with however extensive water inflows in

the upper and middle section.

The rocks in the middle and upper sections of the shaft are thick-

bedded, compact homogeneous sandstones. These thickbedded series are

open jointed and some formations have considerable lateral permeability.
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At a deeper level the rock formations are dense, fine grained mas-

sive muds tones.

9.2 Input Data for the Analytical Treatment
i i i . . i .

Eight different alternatives are retained for a preliminary design

of a nuclear power pi ant which will require a large underground excava-

tion with a span of 50 meters.

Two geometric configurations are retainer . namely the horseshoe

shape and the circular shape. Also two systems are retained for the

stability of the opening, a simple concrete liver and a combined system

of a concrete liner and rock bolts.

Finally two depths appeal to the designers: 75 meters and

125 meters (Figure (9.1)).

The complete sequence of computational steps is given in Figure 9.2.

It should be noted that the output of each computational unit is

checked by the plotting facility MESH to avoid any errors at the early

stage of the analysis. Moreover MESH prepares, in an adequate format

the data necessary for the next encountered step. Finally at the end

of the analysis a computational unit performs the statistical analysis

of the different variables under consideration, and describes the behavior

of the cavity system. Specifically only the variables related to the

finite elements surrounding the opening ire retained.

The proposed uncertainty analysis is essentially based on the sta-

tistical information obtained from a site investigation. More specifi-

cally the fundamental statistical parameter is the variogram, a plot of

the semi variance vs. the distance vector {d} (see Chapter 5). The deter-

mination of the correct variogram curve is of great importance.
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Figure 9.3 illustrates how to obtain a quick estimate cf the variogram

from the existing drilling grid of a site investigation. However it

should be noted that the above procedure is valid only for the case of

statistical isotropy, where the distance vector {d} has no angular

properties.

The adopted variogram curve in the present mocel is a linear model

fcr the R.Q.D. (Rock Quality Designation) values and a De Wijs's model

so far as the other phys-cal parameters are concerned. The information

obtained from a site investigation at 48 particular locations of the

rock media are given in Table 9.1. These quantities constitute tne

input data to the inference model.

Through the computational unit INFMOD the coefficient of variations

of the physical parameters under consideration are computed as shown

in Table 9.2. They reflect the uncertainty with which the estimation

is performed for each parameter. The results are conformal to the

findings of other investigators. (see Figure 9.4)

The Poisson's ratio and the mass density exhibit the greatest

variability with a maximum coefficient of variation of 0.36 and 0.21

respectively.

9.3 Intermediate Results of the Uncertainty Analysis
Coupled with the Finite Element Approach

The organizational scheme of the input data necessary fo" this

part of the study is provided by Table 9.3. The input file for each

alternative is specified according to the three computational units

related to the finite element procedure.
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TABLE 9.1 INPUT DATA OBTAINED FROM A SITE INVESTIGATION
AND LABORATORY TESTS

SAMPLE
NUMBER

R.Q.D. INITIAL
HOR. STRESS

INITIAL
VERT. STRESS

PERMEASIL.
COEFFICIENT

INITIAL
MODULUS OF

ROISSON'S
RAIIO

STRENGTH PARAMETERS DRY

DENSITY
DAMPING
RATIO

a On k ELASTICITY V
* T

C
H max V X

E
i

% 10
3

kg/ cm
2

10
3

kg_/cm
3

log (cm/sec) 10
5

kn/cm
2

DEGREES kg/cm gr/cm

1 70 0.1 0.01 -4. 1.1 0.1 25.° 3. 2.3 0.12
2 82 0.14 0.02 -4.5 1.2 0.15 26.° 3.5 2.38 0.2
3 85 0.135 0.025 -5.2 3.5 0.25 35.° 5. 2.58 0.14
4 87 0.15 0.042 -5.2 4.0 0.26 38.° 6. 2.61 0.13
5 96 0.15 0.048 -5.0 4.1 0.27 39.4° 7.1 2.68 0.125
6 90 0.155 0.052 -6. 4.22 0.28 40.° 8. 2.71 0.12
7 89 0.16 0.067 -6.5 5. 0.3 41.° 8.1 2.72 0.12
8 97 0.154 0.07 -7.5 4.8 0.31 41.° 8.15 2.74 0.11
9 65 0.06 0.008 -3.8 0.8 0.12 24.° 2.5 2.28 0.23
10 79 0.13 0.017 -4.7 1.1 0.13 28.° 2.9 2.3 0.2
11 89 0.14 0.04 -5.2 4.22 0.28 38.° 8. 2.59 0.14
12 87 0.162 0.054 -6.2 4.28 0.39 39.° 8.1 2.63 0.13
13 73 0.12 0.012 -4.2 1.21 0.128 25.2° 4.2 2.3 0.61
14 80 0.15 0.02 -5.4 1.55 0.17 30.° 4.8 2.45 0.18
15 82 0.145 0.04 -5.2 4.1 0.28 38.° 5.2 2.62 0.14
16 89 0.16 0.06 -6.1 4.5 0.31 40.° 7.1 2.68 0.14
17 96 0.164 0.075 -7.4 5.1 0.34 42.° 8.3 2.71 0.12
18 68 0.08 0.0075 -3.5 0.79 0.1 23.° 2.5 2.29 0.21
19 78 0.12 0.019 -4.6 1.2 0.11 28.° 4.0 2.31 0.17
20 84 0.151 0.022 -5.1 3.9 0.18 32.° 5.2 2.55 0.74
21 90 0.158 0.048 -6. 4.1 0.31 36.° 6.1 2.68 0.13
22 92 0.16 0.063 -6.2 4.5 0.34 44.° 8.3 2.71 0.11
23 66 0.09 0.009 -4.1 1.1 0.13 21.° 3.8 2.44 0.22
24 69 0.10 0.010 -4.4 1.0 0.12 28.° 4. 2.44 0.21
25 74 0.1* 0.038 -5.1 3.5 0.22 29.° 5.7 2.6 0.15
26 80 0.153 0.042 -5.3 3.8 0.25 35.° 6.2 2.61 0.14
27 94 0.16 0.05 -6.1 4.0 0.3 40.° 8. 2.69 0.12
28 97 0.16 0.072 -7.1 4.5 0.31 41.° 10. 2.72 0.1

29 64 0.06 -3. 0.82 0.1 20.° 2.3 2.9 0.2
30 75 0.10 0.018 -4.4 1.22 0.13 29.° 3.1 2.33 0.18
31 76 0.148 0.02 -5.0 3.4 0.24 34.° 4.8 2.54 0.13
32 85 0.13 0.04 -4.9 4.15 0.3 38.° 5.2 2.61 0.1

33 96 0.158 0.058 -6.1 4.6 0.34 41.° 6.2 2.69 0.1

34 68 0.092 0.008 -4.0 1. 0.14 26.° 3.5 2.35 0.2
35 72 0.142 0.018 -5.3 1.4 0.21 28.° 4.1 2.41 0.17
36 84 0.148 0.038 -5.1 3.8 0.28 34.° 5.4 2.53 0.15
37 93 0.156 0.048 -6.4 4.2 0.34 39.° 6.8 2.68 0.12 -

38 94 0.17 0.07 -7.0 5.1 0.35 42.° 8. 2.72 0.1

39 67 0. 0. -3.3 1. 0.12 25.° 3.8 2.32 0.18
40 74 0.146 0.018 -4.8 1.9 0.15 29.° 4.4 2.37 0.14
41 87 0.16 0.044 -5.1 4.1 0.3 32.° 5.6 2.62 0.14
42 96 0.157 0.06 -6.3 5.3 0.38 40.° 8. 2.7 0.12
43 69 0.03 0. -3.1 1.2 0.13 26.° 4.2 2.4 0.22
44 75 0.12 0.009 -4.3 1.4 0.15 28.° 4.7 2.52 0.2
45 80 0.13 0.015 -4.6 2.1 0.2 30.° 4.9 2.63 0.17
46 85 0.158 0.038 -5.2 3.85 0.29 38.° 5.7 2.69 0.14
47 92 0.142 0.047 -6. 4.25 0.31 40.° 6. 2.72 0.12
48 92 0.16 0.08 -7.2 5.2 0.34 40.° 8.4 2.74 0.08
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First the effect of the underground flow is considerec. Different

heads at the boundaries are considered in accordance with the observed

water table variation. The results of the computational unit STFLCW

are illustrated in Figure 9.5 and given in TaDle 9.4. As can be

seen the zone in which the coefficient of variation is large has

smoother boundaries for the circular shape than the horseshoe shape.

The obtained mean value of the coefficient of variation is almost iden-

tical for the two proposed shapes but can vary significantly at par-

ticular locations as the corner of the horseshoe shape. Inter-

esting results are obtained for increasing permeabilities. Inaeed as

they become larger the head increases slightly, but the coefficients of

variation decrease indicating that the flow conditions are steadier.

The evaluation of the flow heads permit definition of the water pressure

at any location of the cavity system, a quantity which is necessary

for the evaluation of the shear strength.

In the next computational unit the effect of the excavation is

estimated, either by releasing an equivalent to the initial amount

of stress or by considering the displacements read on extenso-

meters installed at the boundaries of the openings. The latter approach

is adopted and the displacements used to evaluate the change of stresses

are given in Table 9.5 (Figure 9.6).

The computetions performed so far concern the static analysis of

the cavity system and are related to scale 2. In the following the

dynamic analysis is presented considering the effect of both scale one

and scale two.
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The computational unit MODAN provides the first 15 natural fre-

quencies o f bcth scales as well as their corresponding coefficient of

variation (see Table 9.6).

The first two natural frequencies of scale one are in turn used to

compute the adequate earthquake acceleration to be applied at the phys-

ical boundaries defined by the existing fault and according to the pro-

cedure suggested in Chapter 7. A horizontal perturbation is considered

in the present treatment as illustrated in Figure 9.1.

The scaTe factor between the ground motion at the surface and at

cavity depth is estimated to be between 1.5 and 2. (Figure 9.7). The

generated accelerations considered hereafter have a maximum value of

0.25 g.

Using the mocal analysis as described in Chapter 6 the stresses

are computed based on the values of both the displacements obtained in

scale one and in scale two (Table 9.7). This is justified since the

model is linear and the superposition principle valid. The time inter-

val adopted is between 3 and 4 sec and an increment of time of 0.01 sec

is used. This range is adopted for computational simplicity. The com-

puted stresses are illustrated in Figure 9.10 and the whole evolution

of the stress field in the rock media surrounding the opening are pro-

vided in Table 9.8.

The evolution of the dynamic phenomenon is also illustrated in

Figure 9.9 in which the curves of equal displacements at different

times is shown. In Figure 9.8 the response spectra of the cavity system

is provided.

Finally the liner and bolting system is considered. It is as-

sumed that the rock bolts will affect only the strength parameters of
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the rock media and will slightly modify the modulus of elastici-y. On

the other hand they will homogenize the statistical characteristics of

the rock.

The displacements of the concrete liner are computed only under

dynamic conditions without the possible effect of rock creep.

Half of the opening is examined and only tne induced dynamic ef-

forts are considered with respect to the relative position of nodes ^o

and 41 of scale 2.

Tne maximum efforts are induced at 3.80 sec. causing the displace-

ments shown in Table 9.9 and illustrated in Figure 9.11.

At this deformed configuration a stability analysis is performed

showing that the circular shape is more stable than the horseshoe shape.

This is in accordance with the common belief.

The shear strength of the rock media surrounding the opening is

computed based on the Mohr-Coulomb criterion. The conventional factor

of safety lies within the range of 5. to 10.

9.4 Comparison of Different Alternatives

All the elements of the study are presented in Table 9.11. Five

static criteria and three dynamic independent criteria are retained.

The corresoonding weight coefficients are computed based on the statis-

tical analysis of the coefficient of variation obtained previously for

each criterion. The criterion exhibiting the largest variability

assumes the smallest weight coefficient.

The other way to sort the different criteria is the entropy func-

tion according to a scheme given in section 8.5. The results are pre-

sented in Table 9.12 and illustrated in Figure 9.12. A mean entropy
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value is evaluated for each design alternative by averaging the

entropies of the variables characterizing each criterion, at the sur-

rounding the opening finite elements. Then the average of the mean

entropy values is the factor to judge the performance of each criterion

and to determine accordingly the weignt coefficients.

Two different cases are considered:

Case A - The static criteria

Case B - The static plus the dynamic criteria.

Case A and B are treated using the finite uncertainty analysis as

develooed in Chapter 6. The computer programs and subroutines related

to the different computational units are provided in Appendix F.

The above mentioned two approaches to sort the different criteria

were found to be equivalent. However the entropy procedure offers a

more refined sorting than the coefficient of variation. In addition it

provides the probability density function of the examined parameter.

This quantity is essential if a combinatorial reliability analysis is

foreseen.

Both cases are run for different combinations of the values of the

triplet (p, q, s) corresponding to different levels of relaxation of

the ordering relation.

The results are illustrated in Figures 9.13 and 9.14 respectively

for cases A and B.

The unanimity graph as expected is never achieved. This proves

the need of a multiobjective selection approach to rank the alternate

design solutions as suggested in Chapter 8.
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For Case A (STATIC ANALYSIS)

The circular shallow cavity shows a better performance with a

coefficient of relaxation p = 0.4 and s = 1.

For Case B (STATIC AND DYNAMIC ANALYSIS)

The deep cavity with the horseshoe shape is more appealing, naving

a coefficient of relaxation p = 0.5 and s = 2.

The above two options constitute, as a matter of fact, two oppos-

ing design alternatives. In effect for the static case alone the shal-

low circular cavity offers the greater advantages while for the com-

bined static and dynamic case the deep horseshoe cavity is without

doubt the best choice. Therefore for the particular geological site at

hand and seismic conditions a designer would prefer the horseshoe geometry

However, it must be pointed out that the above conclusions are

only valid for the assumptions under which the analysis is performed.

More specifically the limitations imposed in this study for the

comparison of the different design alternatives are:

1. Only the uncertainty of the different criteria is adopted as a means

to compare. The economic, technologic and construction criteria

are not considered.

2. The discord and concord indices are defined with respect to the

relative maximum and minimum values of each examined criterion.

3. The confidence limits for each best choice is not considered since

the answer to that problem necessitates a deep study of the system

reliability.

4. The sensitivity of the model is not examined and the effect of the

weight coefficients (used to determine the ranking of the different

criteria) on the final outcome of the study are partially examined.
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On the other hand the following advantages are offered to the

designer:

1. The model is very flexible and every component of the system can be

changed without difficulty.

2. The parallel structure of the model offers an easy way tc evaluate

the sensitivity of the model with. respect to any desired criterion.

3. The parallel structure does not allow the propagation of an error.

4. The maximum entropy of information offers a means to compute the

probability density function of the examined variables.

Indeed if an error is committed in evaluating the quantities of

one criterion this error will be kept inside this criterion without

affecting the other evaluative criteria. Therefore, the error will

only partially influence the overall analysis.

Also the results of the preceding example indicate that the

scheme which offers a good computational efficiency is the fcl lowing.

1. Collect the Data obtained from a site investigation and their

spatial distribution.

2. Use an Inference model to couple the results of the site

investigation with the available analytical model.

3. Collect the statistical characteristics of the physical parameters

to be used in the analytical model.

4. Perform the Static Analysis for each Design alternative

5. Perform the Dynamic Analysis for each Design alternative.

6. Compare the different design alternatives for the desired range of

the values of the weight coefficients according to the values of

the entropy of information.
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CHAPTER 10

CONCLUSIONS AND RECOMMENDATIONS

10.1 Conclusions

An attempt was made in the present study to analyze the behavior*

of cavity systems under seismic conditions. The results can be sum-

marized in point form as follows:

1. An inference model was developed to rationalize the information ob-

tained from stte investigation and to estimate the degree of con-

fidence that one has ir. the inferred values of the physical parame-

ters describing the rock media.

2. An uncertainty analysis was introduced to deduce the statistical

characteristics of the output from the analytical model as dictated

by the statistical properties of the input, obtained from the above

inference model. The computational part of the analytical model is

handled by a Finite Element procedure.

3. The seismic phenomenon was described and earthquake signals generated

in a realistic approximation, taking into considerations the natural

boundaries created by existing faults in the rock mass surrounding

the location where the cavity is planned to be excavated.

4. An algorithm based on an application of Graph Theory in relation

to a multi objective selection approach, permitted the systematic

ranking of alternate design solutions according to results obtained

from
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the uncertainty analysis. It allowed for the comparison betweer

different alternatives based on the evaluation of their respective

performance over a set o f criteria of comparison.

The above four-step scheme is meant to offer a mechanism for the

evaluation of the modes of behavior cf a cavity system under seismic

loads, leading to the estimation of the safety level reached by tne

cavity system under seismic conditions. A computer program was de-

veloped to handle numerically each one of the above computational uniis-

More specifically:

Unit INFMOD evaluates the statistical moments of the inferred

physical parameters of the rock at any particular point of the geometric

space. It proved to be sensitive to the spatial distribution of the

Known Sample points and thus reliable. It provides the basic input

data to units STFLOW, EXCAV and DYNMOD each of which digitally

simulates different aspects of the behavior of the cavity system.

STFLOW computes the effects of the underground water flow on the

structure and permits the evaluation of the effective stresses around the

cavity. Interestingly it locates the regions of possible nonlaminar

flow, the region in which the water effect is of importance.

EXCAV computes the stresses created by the excavation, taking into

consideration nonlinearities in the behavior of the rock. It provides

also the variances of the stress distribution, allowing the designer

to identify the zones of potential failure.

DYNMODE performs a modal linear analysis. It computes the first

10 to 20 natural frequencies and their variance allowing the determina-

tion of the most critical vibrational mode between different geometric
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configurations. The maximum and minimum stresses induced by the dynamic

phenomenon are then computed to assess the safety level reached during

a seisme. To this effect, the conventional Mohr-Coulomb failure cri-

terion was adopted.

STLINER evaluates the displacements of the adopted liner using a

geometric-nonlinearity approach. The stability analyses on the de-

formed shape is then performed, so as to provide an estimate of the

overall stability factor. This is a parameter of interest - if one

wishes to compare different geometries for the cavlry system.

The partial results of the above programs for each orospective

alternative are then introduced to unit DELECTRE. It allows identifi-

cation of the best choice among the alternatives according to a number

of commonly used performance criteria. It represents the most sig-

nificant part of the study since it provides the tool necessary for

the designer to parametrically identify the most sensitive performance

criteria in the selection of the most reliable alternative.

In general the proposed methodology offers a means to examine the

effects of a seism striking a cavity system on a more realistic basis

than offered in existing procedures. Moreover, it couples the un-

certainty analysis with the information obtained from site investiga-

tions, so that a realistic and reliable simulation of the real geologic

environment can be achieved.

10.2 Perspective for Future Work

The emphasis in the present study was put on the development of a

general methodology for the analysis and design of a cavity system

under seismic conditions. Consequently, numerical procedures as simple
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as possible were adopted for the different computational steps. There-

fore, a future work could be focused on the fell owing broad two itens:

A. The improvement of the computational scheme;

B. The inclusion of economic and other technologic criteria in the

comparison of the different design alternatives.

More specifically, the following recommendations are made:

1. Concerning the inference computational scheme.

The quadratic form approximating locally the trend of the inferred

physical parameter can be more accurately determined by using pattern

recognition techniques.

2. Concerning the Finite Element Method. Isoparametric elements with

16 d.o.f can be included improving the results of the uncertainty

analysis.

3. Concerning the physical parameters. A CAP model can be included

to describe the rock behavior under failure conditions.. Also the

anisotropy" of the rock media can be taken into consideration

without any particular problem.

4. The Dynamic analysis can become more efficient by means of an ex-

plicit formulation, similar to the existing SAMSON code.

5. A more elaborate technique can be used to generate the earthquake

signal taking into consideration the magnitude and of an earthquake.

6. A three dimensional analysis would certainly offer the most realistic

simulation of the real world. But, the efficiency of such a scheme

is questionable at the present time.
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Appendix A

Expression Allowing the Evaluation of
the Dynamic Modulus of Elasticity

From the known relations giving the velocities of the compression

and the shear wave one can obtain:

V
2 = I t 2G

P P

or

pV
p

" (l+v)(l-2v)
+ 2

ITT^T; " (l^)(l-2v)

then the Modulus of Elasticity is equal to:

E . oV
2 ilivii^l (A-1)

where: V = the velocity of the compression wave

p = mass density

v = Poisson's ratic

k + i/2 . G E
but V = - = o / , , \

s p 2o(l+vj

or E = 2p(1+v)V
2

(A. 2}

where: V = the velocity of the shear wave

G = the shear modulus

Now coupling Equations (A.l) and (A. 2) we obtain the Poisson's ratio in

terms of the measured velocities

v
2 (l*y)(l-2v) . 2a(14v)y

2

p 1 - V c
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"V 1

! -^ -2
1 Me I

cr v = * !
-2-jj

j
(A. 3)

L
v
s J

Replacing Eq. (A. 3) in Eq. (A.2j one obtains

£ = V^ S J_ (A. 4)

P s

which is the expression of Modulus of Elasticity in terms of the

measured velocities V and V .

P s
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Appendix B

Computations Related to the Inference Model

1. Relationship between Covariance and Varioqram

Using the general expression of the second statistical moment one

can obtain

E _<vy -
(vv 2

.

* E jvv
2

.

* E

.

(VV 2
-

- 2E
_<

zx-v<vy -

* E<W E(Z
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-Z
y

: + C(Z
x
-Z
y
,Z

x
-Z
y

) E(Z
x
-Z

y
) E(Z

x
-Z
y

)

+ [!VVVV - 2E(W E(Z
x
-Z
y

) -

- ^wvy
where: C - the covariance of variables Z and Z

which after a few simplifications leads to

E _(vVVV
2 = C(VVVV +

C(Z -Z ,Z -Z ) - 2C(Z -Z ,Z -Z ) =
x y x y v

x y x y

= 2C(Z -Z ,Z -Z ) - 2C(Z -Z ,Z -Z )v
x y x y' x y x y

Making use of the general statistical assumptions given in section (5.3)

we obtain

Ej (Z -ZJ - (Z -Z )

2
„ .

^ *
2
*-*— C(0) - C(Z

x
-Z
y
,Z

x
-Z
y

)

which leads to the expression of the variogram y

y[(Z
x
.2
y
).(Z

x
-Z
y
)] - C(0) - C(Z

x
-Z
y
,Z

x
-Z
y

)

or Y (d) = C(0) - C(d) (B.l)
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2. Optimization Using Lagrange Multipliers

- o

The prcblerr. consists to minimize E[(z-z) ] tne variance with the

constraint E[z(x,y)] - E[z(x,y)] = 0.

Using the assumptions introduced in section (5.3.1) we obtain

E[(z-z)
2

]
= C(z.z) + l b I b

a
[C(z ,2 1 - 2 I bn C(z,z ) (3.2)

and E[z] - E[z }
« 7 a

?
f
l

- £ a,[£ b
a

f*J =

a

Z *
t
«l

I ^ ft - o,

(B,3)

£ a

a 1,. .. ,n I s 1 k

The minimization of the variance will be obtained using the method of

Lagrange multipliers as fellows.

The Lagrange function being

L - C(z,z) - 2[ b^ C(z,z ) +
I bV C(z ,ZJ -

I a
a

a, 3 = 1,. . . ,n l = 1,. . . ,k

The conditions to obtain the minimum are

3L

(B.4-)

9b*

= for all b 's (B.5)

|t-» for all u 's

The unknowns being b
u
's and u ' s we obtain a linear system of a+k

equations.
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The differentiation of L with respect to b
a

and M. g^ves:

First with respect to t" .

-2 C(z,2 ) + I b
s

C(z ,1^ + I u. f
Z

- C V a = l,n (5.7

Second with respect to j „ .

-f
l

+ J b
a

f
2

= C V i = l,k

The system then can be written as

(3.8)

I b
B

C(z ,2 ) t^ y. f* - 2 C(2 ,2

I b
a

f * = f
£

a

(3.9)

The covariances c(z .z a ) and c(z .z) are obtained from the followinc

relations:

C(2 ,z) «.y(Fz -Fz) and C(z ,zj =.Y (Fz -FzJ
cz a ct r ^ s

Then the linear system of equations becomes

T b
s

Y (z -zj + [ u. f
Z

= 2 Y (z -z)
£ '

v a 8
o

I a a
B x.

7 b
B

f
2
(zj = f

2
(z)

6 °

where the b's and y's are the unknown quantities. Therefore, solving

this system the estimator of the variable is defined by:

Z(x,y) =
I b

S
I (3.11}

and the variance of the estimate is

a
2

-
I b

£
Y (z -z) + I p, f

l
(z) (5.12)

Z 6
3

£
l
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3. Regression analyses estimates versus estimates obtained by the

inference correlative model.

The estimation Z{X ) of the examined physical parameter is per-

formed according to the following regression scheme with independent

residuals:

Z:X
Q

)
=

l a
3

c
£
(X

o
) + e (X ) (B.I3)

8 = j.

where the coefficients a„ are inferred from the set of all known values

Z„, 6 l,...,m, g (X ) are some a priori known functions and e(X ) -,s
D S C

an indeoendent residual. The a 's are determined using the least
B

squares technique.

On the other hand the inference correlative model is based on tne

assumption of correlated random fields and the estimation is expressed

as:

Z(X ) . £ ,
3

Z
E

(B.14)

which is a linear combination of the known values Z . The unknown

parameters a„ are determined according to the minimization scheme

given in appendix B.2.

To compare the estimation schemes, we compute the deviation

D - D
R
-D

F
and the coefficient of multiple correlation Dr/D

R
where

D
R

=
I ( z

i)

2
" (I z

i
)

2
/n ; where Z- the real values (3.15)

2 " 2
D
F

= V (Z.) • ([ Z.) /n ; where Z. the estimated values

(B.16)
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Appendix C

Computations Related to the
Finite Element Uncertainty Analysis

1. Evaluation of the Strain Energy cf the Beam Element Considering
Geometric Nonlinearity

It is given by the following expression:

>'i i
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n
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2 3
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5 2
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Developing each component of the above expression we obtain
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F r = 7T i eE + ce e dv = o";£(u + v Jd*
5 2

J
x x

p ^y xy 2 j x
v

,x ,x
;

V - V

£ ( e° u v dV
2

J
xy ,x ,x

V
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L N
)dV = i

[ u (u
2

+ v
2

)<jv .
xy xy' <T

J
,x ,x >x

;

-Ij p0u
,x

v
,x

dV =
Ij ^!x

+ u
,x

v>V

V V

All these quantities need to be integrated over the volume of the

element.

It is to be noticed that:

if

Jj
dz dy = Area = A

y cz dy - Inertia = I

U

and
u

y ' dz dy = for odd n

Mere development of F's expressions are given in the following

computations.

Vz=\\ :*l
+ *

2

\xx dV
-7J

2al^,xx dV

v
u

- - ' a? A dx +
! v

2
.... I dx = I A a

2
L + I

j
v
2

dx
Cm 1 If X/\2 j

"1
j ,xx

1 r 1 f 1
"

* . 4 ,2 2 ... ,

2 V 2 j 4
u
,x

+ v
,x

+2u
,x

v
,x
dV+p

' 2 2
u^ / dV
,x ,x

1 4 \ r
1 2 < 2 i 2

| a^
j

dx : dy dz + j a^ dx v"
x j

y" dy dz +
f a^ dx v

fa

tfW y dy dz
3 .2 f 2

',xx

^ a? A L + i A a
2

i v
2

dx + i c A a
2

I
v
2

dx + I a
2

I ( v
2

dxri MLT
4
Hd

lj \x 1 \x * a
l

!

J

v
, XX
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F
4

-
\ *>i - y \xx> dV •

J < a
i

dv -
J
<> \xx dV = < a

i
A L

p .
i f

N , o N
F
5

" (e
x

r
x

+ p e
xy

c

'xy > dV H Ex^ x
+ V

!x>
dV -P

f <v U
,x \x dV

Fr - t e A a. , dx+e
5 2

L
x " u

i j

I v dx + ir -; A v dx -
x ,xx 2 x j ,x

p £ a, A
xy 1

v dx

F
6 = l|^'x + u ,x\x' dV = ?|( 3 l-^',xx' 3dV

+ \ j
(a. - y v )v

2
dV

2 j

x
1

J ,xx' ,xx

W J
«"x-|»ii j\XJ ^i jii! v

!»
dx

The results of these computations are given in Taole (6.1) in

which the contribution of each type of variable is clearly snown.

2. Evaluation of Matrices [nJ and [n ^j

Differentiating the expressions of $'s with respect to the vari

able x we obtain:

1.x

'2.x
= 1

^3,x
=
r

x " l

3 2 3 1

H
t
x "J

x '
L

X T
2

(C2)
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The above expressions as a matter of fact represent the strain (a dimen-

sional quantities). Also

l,xx

$0 - j

3, xx L

(C.3)

- 6 3

U, xx "

'J.

x '
L

Now from the assumptions stated in section 6.3

T T T
v(x) = a $(x), V

x
(x) - a *

x
(x), v

xx
(x) = z i

xx
{x)

Therefore:

/ (x) = a (<p , )a
j A | A ] A

v
!xx

(x) s
°Vxx'*,xx )o1

(C.4)

and
f ..2 ... T

r

" dx - a ! (?
1

Y ,*
J
¥
)dx a

»*
j
J >

*

»A

X
L
x

Then

r 2 . T

\xx dx s a ( *lxx'^xx
)dx

'

a

-x

— !"!! !.! *

i

nj
1 --*'

i.j

: U 1

,6
J"

)
,x' ,x' .

.

1J

-f
J

X
Y
x

4 J

X X

*• X
X X J

dx
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cr

(1,0)
=

J

dx

1 » V ^'

1 (f-x-1)

|C (f x-1)
^2

/ 3 2 2 . lx(7X - - x +|-)

L"

, 3 2 2
(-5- X - T- X + T ;

r X + j) I

1.2

Final Ty

[n
l

]
= L

1

1

X

1/3
1

1/20J

(C.5

In the same way matrix [n„] is evaluated.

r
in

L

(i,j) = f

i »J

dx

([' (r ) (~j x -
r ;

<X x - hV

L
2

x
L

j

and after integration

[n
2

J

4

3

(C.6)
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3. Newton Raphson Iterative Procedure

The gener?'< form of the equation of equilibrium is civen by

[NK(u
n
)] - {F; = (C.7)

Expression (C.7) represents a system of nonlinear equations. To apply

Newton's i-erafive procedure we have to guarantee:

a. The Monctonicitv of the nonlinear

b. The Continuity of the Nonlinear function.

Uncer the assumption of small strains but large displacements the above

conditions are verified.

Then using Taylor's expans^cr:

mi// n
\ - mi/- n ~l\ j. 5NK(u ) , n n-1,

NK(u ) = NK;U ) + \
L iu - u }

and substituting in Equation (C.7) one obtains:

(C

L

?NK(u
n "-) \ n n-1, _ c wf n-1,

V- L (u - u / = F - NK(u )

oil
(C.9'

NK(u)

i
u

EXACT
SOLUTION

This is a linear system of equations

//lst Iter.

2nd Iter.

and can be solved if {u } is a

known value. In our case it is given

by the initial conditions.
u 2 L'

X

4 . Evaluation of First and Second Moments of the Tangent Modulus o f

Elasticity

The independent random variable to be considered is the Initial

Modulus of Elasticity E . . Therefore the First Moment of E „ is:

1/E,

! 1
R
f

«
_, 2

i-p a, -o-l

L
E

i

l J
J

where F. s the mean value of E,
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The Second Moment is evaluated using an approximation as suggested in

section 3.4 by F.q. (3.4). Therefore the variance of E, '-s

2- i 2,, N

^ E
t
(E

i
:

a ... t«J - a (E.J —

—

.' r i ^ x
.

5. Evaluation of the Derivative cf the Stiffness Matrix with Ressect
to t-ie Modulus cf £*i art' city E ar.d tnt Pp-.sson Ratio v

The stiffness matrix of a triangular constant strain element *'s

given by the exp-ession

[K] = [e]
T

[D] [B] t A CC. 11)

where [8j - the Influence Matrix

[D] = the Elasticity Matrix

t = the thickness of the element

A = the area

The derivative of [K] with respect to tne Modulus cf Elasticity is

given by

~5T^ t B J ~^" L B J t a v C. 12 )

wnere

1-v

13[Q] _
'

at
=

(l+v)(l-2vj
i-v

1-2-

The derivative of [K] with respect to the Poisson's ratio is given by

Mil =
[ B ]

T ML [31 t A (C. 13)
9 v o v

* r m
where °[ is computed in the following way
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1 - - 2v ) [D] --

1-v v

E w 1-v

i C
l-2v

Ta<"ing the derivatives we obtain

-

3 :r

-i i

(-1 - 4v) [D] + (1 + v)(n - 2v) ^ = E 1

and finally

L

; -I 1

~"
(l+v)(l-2v) ^ +

(l+v)(l-2v) i

l
- 1

° !

1

o o -i !

(C.U)

6. Determination of the Equation of Motion

The decomposition of the displacement gives

(d.(t)} = {d?(t)3 + id{
N
(t)}

p
where (d-(t); = the quasistatic displacement due to the disolacement

of the boundaries

IN
{d. [t)> - the inertia! contribution to the displacement of the

node

Then substituting in the following equation of motion it is obtained

[M] {d> + [c]{d) + [K] [d] ~ F =

where [M] = the mass matrix

[c] = the damping matrix

[K] = the stiffness matrix
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[M] {3? + d{
N

} + [c] {£. + a{
N

> + [Kj {a* + d™} = (C.15

or [Ml {dJ
N

} + [c] (dj
N

) - IK] {d{
N

} = -[M] {d*} - [c] {^}

If we partition the above matrices into submctrices defined according

to the free and constrained nodes as illustrated in Figure C.l it is

obtained (using the following abbreviations).

yd

fe *

F = ^ree nodes

C = constrained nodes

B = boundary component

IN = inertial component

'•IN' I • I N i

+
Ll a2

! (
F

; + i

1: 12
: (

F

r
m r

L

L
C
21

c
22j l

°
) [hi

K
22\ .

°
j

n '

d c
i J

F 11

m • ld° 'c91 c 99 ! d:
Cj 1

C

1

u Zl ZZ_, , C

/

It
(C. 16}

The equation of motion for tne f^ee ncdes is then given by:

[m
F

i {dp
N

} + [cu ] {aJ
N

} + [Ku j {d™} = -[m
F

: {d*}

7 . Evaluation 0^ the Variance of the Natural Frecuencies

Using Equations (6.45) and (6.48) the equations of motion become

n n

m .(1 + T a 5. ) -(Q • + 7 I- a )ov *. r ir' 01 -, ir r
J

r=l r=i

« 11 ^ 'i

a) + \. / r a ) ~ + 2u ( ) n a) +
x L

. r r
y

o
v S r r

;

r= i r=

1

!

1 01 Jz, ir r
r-l

= (C.17)
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Now comparing the terns containing l'denf-ca^ powers cf the parameter -

one oDtains:

c oi o- 1
V
01

{-w m . 7 • + K • 7r . } / a
o oi ir i ^ t- r

=
':2
^o \ m

oi %i
+ y

o
m
oT Q

oi
£
ir

} I B
r

(C19)

or

y 7

4

o oi . ir o r oi
w
oi o oi

y
oi ir

Multiplying by the transpose of Q . it is obtained:

(-w
2

Q
T

, m , + Q
T

- K.)ir. =2* n Q
T

. m . Q . + u
2

Q
T

. m . Q . 5

.

v
o

yoi oi y
oi i ir or w

oi oi
s
oi o

yoi ci xi v

or

T ? T *? T
it. (-a) Q.m.+Q.K.) s 2u) n Q.m.Q.+uTQ.m.Q.S.
ir v

o
y
oi oi y

oi r o r
voi oi

v
oi o

v
oi oi

y
oi -.r

Now making use of Eq. (C.18)

T 2 T
2u n Q.m.Q.+ufQ.m.Q.s. =0

o r
yoi oi 'oi o oi oi y

oi ir
(C.20)

Finally for each natural frequency (j) the influence parameter n can

be computed from (C.2C). Thus

m, 6,
1 lr

: (Q.)

(n
r ).

=

w

L Vnri °J

2«o
}T

;ra
o

] {Q
o

}
.

J J

(C.21)
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8. Evaluation of the Derivative of Stresses with Respect to the
Frequency

The general expression for the stresses is given by Eq. (6.50

IN

~-= [D][5]
30) • CJUi-

for i = 1,. .
.
,n nodes.

The only term dependent on the frequency is the dynamic displace-

ment {dr' } which is given by Eq. (6.4-1)

(d™^ = [A].: [B]]" ^(t)

where: [A]. matrix of eigen vectors

[B]j - influence coefficients matrix.

, ft ..
,

-€.; w. (t-x)

R,(t) = 4- d-(t - ~)e 1 n
Sin «

di
(t-t)dT

J ^d
i

J _5 - di

which has the familiar form od Duhamel's integral.

The use of a numerical procedure is suggested by Newmark (63).

Following his approach at time t- = t. , + At the loading factor R. (t)

(having the dimension of a displacement) becomes:

R
1
(t

J
)-R

1
(t

j^ + R
1
(t

j
. l

) AtM}-B)R
1
(t

j
. l
)Ut)

2
+

?
(C.22)

for i = 1,. . . ,n modes.

where: 3 = j consistent with a straight-line variation of R. in the

increment of time it,
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and

R,(tj) - -25B1 Rj -4(R, - Rp) -dj(t.i-)
V
B

R^ = static displacement relative to the base,
c

Therefore:

5 R^tj) s a R,(tj) at
;

(C.23

s R.-'.tJ

or T
1

j » BC-2S R< - 2a.. (R. - RJ j i'C.24)
- -1 "' 1 "' "°

9. Determination of the Eigenvalue Problem for the Stability Analysis

Substituting Eq. (6.53) in Eq. (6.51) it is obtained:

r*mli {u
" +i- . u

n
}

. {F} . MK(u
n-i, . >mLh {u

" . u
n-i,

i 3U aU

*8N.<(u
n
)'

{u
n+ I . u. . 3NK(u

n- 1}
n + n-1, . {F} . N|c(

n-1,

3U 3U
' '

'mil {u
"+ l . u

"
}

. 'iNKtu"'
1 )'

{u
n^l

. u
n

+ u
n-l . u

n+ l
}

.
:U 3 Li

= {F} - NK(u
n ' 1

)
(C.25)

but

or

(u
n+1

- u
n

) + u""
1

- u
n+1

• X(u
n+1

- u
n

)

I'm^lX . '8NK(u
n-y

; . n+1 . n , F
1 3U 3U I

\
w . - -

j

'mill: . x 'mi£li
'

iu . .
F (c.26)

3U ; 3U
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Appendix D

Computations related to the Earthquake Generation Model

The equations of motion of the two degrees of freedom system are

given (section 7.2). Tney are:

x + 2(E)(fl
n
;x +UJj)x+ 2(£)(«

n
) M(x-z) + w

2
M(x-z) = -y

2 - 2(5)(u
n
)(x-2) - tujjU-z) = -y

or x + (2 5 <d M + 2 E f^)x + (njj + m
2

M)x -

- (2 c u
n

tf)£ - U 2
M)z = -y (D.I)

- (2 5 <D
p
)x -

( w
2
)x + z + (2 5 u

n
)z + a

2
z = -y (D.2)

Multiplying Eq. (D.2) by M and adding it to Equation (D.l) one obtains

x + (2 E ^
n
)x + f.

2
x + M z = - (M+l)y (D.2)

2 + (2 5 w
n
)£ + ^ z (2 5 w

n
)x - Ujpx = -y (D.4)

By using the Fourier Transform the working space becomes the frequency

domain. Then

-J x + (2 E ft )(j«)x + C
2

x - M w
2

2 = (M+l)*
2

y (D.5)

-to
2

2 + (2 ^ u»
n
)(ju)2 + u>

2
2 - (2 e. w

n
)(ju))x - u3

2
x = x

2
y(D.6)

or after a few transformations

[Q
2

+ 2(E Q
n
)(ju) - u)

2
]x - M a

2
z (M+l)u>

2
y (D.7)

[( w
2
-tD

2
) + 2j £ u

n
a)]2 - [2j £ u>

n
u + u)

2
]x = J y (D.S)
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Thus from equations (D.7) and (D.8), x can be evaluated. Indeed:

x - J £ 2 + (^l)"
2

y
( D .9)

0* + 2(5 n
n
)(j to ) - u>

Now replacing Equation (D.9) in Equation (D.8) we ootain

2 2 .
lv2j 5 *

n
«) + '^] • M x

2
z

n ~ n

[(2j Z. u>

n
a? + a)

2
](M4l)u

2
V

2
. « * a) y

Qjj
+ 2(5 Q )j u> - u>

2 2
Setting: A = u£ - uJ n

B = 2j c ^
n

u>

Finally z _ m
2
[D + C(M+1)]

y D(A+B) - C M a)

2

Expression which leads to Equation (7.5).

(D.10)

2
C * 2j £ W U3 + UJ

n

D = n
2

+ 2(E C
n
)(ju) - w

2

Equation (D. 10) becomes

(A+3)z . ciMaizi . c(mW v m z
y

"

(D>n)

Then C(A+B)z - C(,M w
2

z) = C(M+l)u
2

y +
( u

2
(D))y (D.12)

or Z[D(A+B) - C M w
2

] = a)

2
y[C(M+l) +-D]

(D.13)
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APPENDIX E

COMPUTATIONS RELATED TO THE EVALUATION
OF THE ENTROPY OF INFORMATION

The maximization of the entropy E given in equation 8.13 subject

to three constraints is handled according to a variational constrained

optimization scheme.

The Lagrangian equation is:

P(f) log
2

p(f) df + xJ p(f) df - l

x
2
|f p(f).f-df - f + >,

3
P (f).(f-f}

2
df - c\

l_» —CO J (_^ — at

(E.l)

where p(f) is the unknown probability density function of f, f is the

2
known mean value of f, o- is the known variance of f and \.

t
X
? , X- are

the Lagrange multipliers.

The maximum of L is obtained through Euler's procedure assuming

that

p(f) - p(f) + 6j ni (f) (E.2)

where e, are constants equal to zero for the maximum value of l and r,«

are arbitrary di fferentiable functions compatible with the constraints.

Euler's equation is then the following:

o

3P
p log

2
(p) + A

1
p + x

2
p f + x

3
p(f-f)

J
= (E,
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and fi mlly it becomes

p(f) = e

1og
2

e + x. + ,\

2
f + ^

3
( f - frJ

(t.4)

The normal distribution satisfies this expression and is substituted ,-

n

the Entropy function

E =
r

p(f) log. (p(f)) df

1
(

f-T,
2

where p(f) =

8f
*r

After few computations the following Entropy expression is obtained:

log
2
(e)r(l.5)

E = log
2

(c
f

) + log
2
(^7) +

where r is the gamma function.

/?
(E.5)
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Appendix F

COMPUTER PROGRAMS AND SUBROUTINES IN RELATION WI TH

THE DIFFERENT COMPUTATIONAL UNITS OF THE STUDY

These programs are exclusively written for a CDC 6500 computer

available at the Purdue University computer center. The following

listings are provided:

SUBROUTINE LAGR2

PROGRAM MAXACSP

SUBROUTINES [QURAN, OUT, PRINT, PL-

PROGRAM MESHPL

PROGRAM STFlOW

PROGRAM STLINE

SUBROUTINES DEI GEN, UNCERT,

MOMENTS

(Inference Model Analysis >

(Earthquake Generation Model)

(To be included in Program PSEQGEN
written by J. Ruiz and J. Penzien)

(Checking and Plotting of Finite
Elements Meshes)

(Finite Uncertainty Analysis of
Underground Steady Flow)

(Finite Uncertainty Analysis of

the Liner Element)

(Dynamic Modal Analysis)

All these programs are written in FORTRAN IV source language using

hard and soft wire facilities available in the CDC computer system.
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This SUBROUTINE defines the Lagrange multipliers and solves the

optimization problem at each of the nodes of the given mesh, allowing

the determination of the first and second statistical moments of the

physical parameter that is to be infered from a site investigation.

XT, YT = COORDINATES OF THE NODE IN WHICH THE ESTIMATION OF THE

STATISTICAL MOMENTS WILL BE PERFORMED

EXPVL = EXPECTED VALUE OF THE PHYSICAL PARAMETER AT THE NODE

VAR = VARIANCE AT THE NODE

NHEIG( ) = EIGHT GIVEN INFORMATIONS CONCERNING THE PHYSICAL

PARAMETERS AROUND THE NODE

SUBROUTINE LAGR£ <XT.< YTj EXPVL > VAR?

EVALUATIDNN DF THE STOCHASTIC PARAMETERS AND SOLUTION

NA = NUMBER DF CONSTRAINS DEFINED AFTER THE CHDDSEN
POLYNDME TO APPROXIMATE THE TREND

NALFA = NUMBER DF GIVEN POINTS TD PROCEED WITH THE
ESTIMATION

COMMON X <-. 3 > j V < 3 ':> « 2 < 3 > t NUM (. 3 h NUMTR I < 3 » £ > j NG < 3 > j ND < 300)
1 j NPD I NTE •:. 3 > > NPLA < £ > j KENT < 4 ) , VENT < 4 > s DELTA j NPG I V j XM I N » XMAX > YM I N j Y
£MAX > N I NTX j N I NT

Y

, NNDX » NNDY , L4 » NENT <4 > £ >

COMMON .''SEC-' NUMEL < 3 > -. NTR < 4 j 8 ) p NHE I G C 3£ > j D I ST < 3£ > s NHE I til <8> > DI ST
1 i < 8

>

j LNX j KNY , K8 j NBEQ
COMMON .•-B3.' NKRIGjNADR
DIMENSION STINFC£0j£0>. SECMCS0>» SDL<20>
DIMENSION F(15)6)) BSEC<£0>
DATA NA , NALFA j LEVELS , 8 > 1 -'

DATA LSF >LCF.--£ ?£.••'

MODEL WITH FLUCTUATION
MODEL WITH VARIDGRAM

c LSF = 1 MODEL WITH MEAN » LSF = £
c
c

LCF = 1 MDDEL WITH CDVARs LCF = £

INITIALIZATIONS

NEGMNA+NALFA
DO 10£ IR=1?NEQ

DO 101 JC=1»NEQ
STINFCIRj.JC> = 0.

101 CONTINUE
10£ CONTINUE

NALFA 1=NALFA+1
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C T
C EVALUATE BASES FUNCTIONS T
C, T

DD 103 IP=lsNALFA t
npt=nheig<ip) t
xa=x>::npt> t
ya=y<:npt> t
ZA=Z<NPT> T
IF (LEVEL. EQ. 5) PRINT , *ZALPHA*j XAj YA>ZA T
F<IPj1>=1. T
F f.:ipj£;j=XA t
FUP?3>=YA T
F<IP»4>=XA*XA T
F<IPs5>=MA*:YA T
F<IPj.6>=YA*YA T

103 CONTINUE T
C T

FaHALFAlj 0=1. T
FCNALFA1j£>=XT T
F<NALFAl!.3>=YT T
FCHALFA1j4>=XT*XT T
F<NALFA1?5>=XT*YT T
F'::NALFAIj6>=YT*YT T

C T
C T
C FORM MATRIX ^STINF?' T
C T

DD 108 IR=l?NA T
DD 107 JC=1jHALFA T

STINFURj JO=F<JCj IR> T
IF CLCF.EQ.E) GD TD 104 T
GD TD 105 T

104 IF CLSF.EQ.2) GD TD 106 T
1 05 ST I NF < JC+6 t I R+NALFA > =-F < JC > I R > T

GD TD 107 T
1 06 ST I NF < .JC+6 > I R+NALFA > =F (. JC > IR> T
i07 CONTINUE T

C T
C FORM RIGHT SIDE T
C T

SECM < I R ) =F < NALFA 1 j I R

)

T
C T
C IF < LSF.EQ.£> GO TO 130 T
C SECM <1> = 0. T
C T

108 CONTINUE T
C T

DO 113 IR=NA+1jNEQ T
DO 110 JC=l?NALFA T

IPT=NHEIGaR-NA> T
jpt=nheigcjc> t
dis=sqrt<<x<ipt?-x<jpt>>**s+«:y<ipt>-y<jpt>>**£> t

C T
C U =0. T
C IF < DIS. EQ. 0. >GD TD 161 T
C Nl = Z(IPT) - ZCJPT> T
C U = ABSCWn •' DIS T
C T

IF CLCF.EQ.S) GD TD 109 T
ST I NF CI R ? JC :' =CDVAR < D I S > T
GO iu iiu T

1 09 ST I NF <. I R j JC ) =VAR I OG < D I S

)

T
110 CONTINUE T

C T
C FORMM RIGHT SIDE T
C T

IF <LSF.LT.£> GD TD 11£ T
DIS=DIST<IR-NA> T
IF CLCF.Ei3.£> GO TO 1 1

1

T
SECMCIR>=CDVARCDIS) T
GD TD 113 T
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iii SECM<IR>=VARIOG<OIS> T
GD TD 113 T

112 CONTINUE T
C T

SECttaR>=0. T
113 CONTINUE T

DO 114 IS=1?NEQ T
114 BSEC<IS>=SECM<IS> T

C T
«»:»:"*«**»::** DEBUG *****«'****'* T
C T

IF '::LEVEL.NE.5> GO TO 116 T
DO 115 IR=1jNEQ T

PRINT 1£3> •::STINFaR!.J>i..J=l?NEQ>i.SECMaR> T
115 CONTINUE T
116 CONTINUE T

C T
C SDLVE SYSTEM ** T
C T
C T
C T

IC=£0 T
C T

CALL GAUSS (ICj NEQj ST INF 5 SECM>SOL> T
C T
C T
C T

IF aEVEL.EQ.5::' PRINT 1£4.< (SOL( IJ> » 1 = 1 >NEQ> T
C T
C COMPUTE VARIANCE B£(M> T
C T

VAR=0. T
V1= 0. T
ve=o. t

C T
DO 117 IR-IjNA T

h < NALh A 1 ? I R ) =ABS ( F ( NALFA 1 •> I R > > T
V 1 =V 1 +SOL <:. NALFA+ 1 R >*F < NALFA 1 > I R > T

117 CONTINUE T
DO 119 IP=1jNALFA T

IF <LCF.EQ.£> GO TO 118 T
V£=V£-SDL(IP> :*SECM(NA+IP> T
GD TO 119 T

118 V£=V£+SOLaP)*SECMCNA+IP> T
119 CONTINUE T

C T
IF CLSF..EQ. 1> V2=0. T
IF (LCF.EQ. 1> GO TD 1£0 T
VAR=Vi+V£ T
GO TD 1£1 T

120 DIS=0. T
VAR=CDVAR ( BI S > +V 1 +V£ T

1£1 CONTINUE T
C T

IF (LEVEL. EQ. 2) PRINT 1£5< VAR j XT 5 YT T
C T
C ESTIMATE EXPECTED VALUE T
C T

EHPVL=0. T
DO 122 IP=1> NALFA T

EXPVL=EXPVL+SDL < I P > *2 ( NHE I G ( I P > > T
122 CONTINUE T

IF (LEVEL. EQ. 2) PRINT » 5*EXPECTEBVAL=*?EXPVL T
RETURN T

C T
1 £3 FORMAT C 1 X j 1 ( F 1 .

3

j £X >

)

T
1 £4 FORMAT ( IX? 1 5HSDLUT I ON VECTOR ,

•'
, IX j 1 CUTS. 3j 2X> > T

125 FORMAT (IXj £5HESTIMATED VARIANCE D2<M>=»F10.5> 2HAT?2F10.5> T
C T

END T
FUNCTION CDVAR(R> U
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CDVAR=EXP<-R5 U
RETURN U

U
END U
FUNCTION VARIDGCRJ V
IF < R. EQ. 0. > R = 1.

VARIOG = ALDG<R)
RETURN V

V
END V
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PROGRAM MAXACSP < INPUT* OUTPUT* PLOT) A
C A
Q *«»:***:*:*.***:***«*::*****•#:«****•***« £
C A
C THIS PROGRAM FINDS THE MAXIMUM ACCELERATION SPECTRA A
C OF THE TWO MASSES SYSTEM VIBRATING UNDER ASSUMED A
C SEISME . A
C A PLOT FOR DIFFERENT VALUES OF THE PHYSICAL A
C PARAMETERS IS PROVIDED BY HIDE < PURDUE CENTER) A
C A
C VERSION DNM377 A
C A
C A
C A

DIMENSION ZiaiCDi. Z£(110)j FR(110)j ZRC40) A
DIMENSION Z1MC30?30)j Z£M<30j30) A
DIMENSION XAH<110>s YAHCllO)? TLC8)j WAhK3QQ»4)i BAH< 1 1 0? 1 1 0? 2) A

C A
EQU I VALENCE < DAHa j 1 t 1 ) , Zl Ma * 1 ) ) * A

C 1 < DAH<1j1j£)j Z£M<1?1) ) A
ft

P
REAL MU A
DATA MDD---1.-- A

C A
C INITIALIZATION A
C A

ND=£I A
HN=50 A
AL=0. A
ZETA-0. 05 A
MAXDIM=300 A
XMAX=4. A
YMAX=40. A
XLNTH=6. A
YLNTH=3. A

C A
DO 107 M1=1jND A

C A
MU=0. A
DD 106 M£=1?ND A

C A
FR<M£)=MU A
Z1(1)=0. A
Z£<£)=0. A

C A
OM=0. A
DO 104 1=1 ? NN A

DM=OM+. 05 A
Al=l.-OM**S A
Bl=MU+i. ft

AA1=AL**£-0M*:*£ A
AA3= < 1 .

.-• < OM*'*£ ) ) - 1

.

A
ZET1=0.1 A

C A
IF <MDD.EQ.£) GO TO 101 A

C A
C 1 =£ . *AA 1 *B 1 +4 . * < ZETA**£ ) * < OM**£ ) *B

1

A
C A

Z1N=AA1:**£'+B1**£+C1 A
C A

DD 1 = ; AA 1 **£ ) * < AA3**£ ) +MU*®£-£ . *AA1 *AA3*MU A
D 1 = i AA 1 jk*£.,dm**:£ > + ,; []M**S ) *MU**£-£ . *AA 1 *MU A
BB£=4 . * < ZETA**£ ) *D

1

A
C A

Z1D=DD1+DB£ A
GO TO 10£ A

C A
101 ZZ1=AA1+B1 A

ZZ£=4 . *QM**£* < ?ETA*B 1 +ZET 1 *AL ) *'*£ A
Z1N=ZZ1**£+ZZ£ A
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iOi

104

105

ZD i =hh 1 *AA3-MU-4*ZETA'*ZET 1 *AL
ZBE=ZETA*AA1*1 . /TJM-ZETA*DM*MU
ZD3=ZET 1 ®DM*AL*AA3
ZD4-4* < ZD3+ZD3 ) **£
ZlD=ZDl**e+ZM

Zia^SQRTCZlN-'ZirO

DiFi=zia>-zi<i-n
IF CDIFl.GT. 0. > Z1MAX=ZKIJ

DT=<AL**£/,nri**£>-i.
DDT=ABS<DT)

IF CMDD.EQ. 1> GD TO 103
DD 1 =4 . *> < ZET 1 **£' > * C AL^DM > **£
DDT=SGRT<DT**£+DD1>

Z£a >=aiu*zi a :>+bi vddt

DIF£=Z£<I>-Z£<I-1>
IF (.. D I F£ . GT . . ) Z£MAX=Z£ < I

IF <DIF1.LT. 0. > GD TD 105

CDMTINUE

CONTINUE
PRINT 5 ^ALjMUj^ALjMU
PRINT 114? (Zl(I).I = l-Nf1)
PRINT t *
PRINT 114- (ZE(I). 1=1 -NN j

ZlM<Mi>Me>=21MAX
Z£M<M1,M£>=Z£MAX

IF C Z 1 M < M

1

1 ME) . GT . YMAX > Z 1 M < M

1

> M£ > =YMAX
I F < Z£M < M

1

j M£ > . GT. YMAX ) Z£M < Ml t ME) =YMAX

MU=MU+.E

1 06 CONT I NUE

AL=AL+.£

107 CONTINUE

ftL- .

DD 109 K=1jND
PRINT ? i*AL-*5AL

DD 108 J=1jND
PRINT 115? JjFRCJ
MPD=£1-K
DAHCMPDjJj 1)=Z1M<K?.J>
DAH < MPD j J « £ > =Z£M <

K

, J >

IM-CKj J^jZEIKKjJ?

10? CONTINUE
AL=AL+.£

109 CONTINUE

READ 116 j NPLDT
IF < NPLDT. EQ. 0> GO TD 113
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PLOTING THE COMPUTED VALUES

DELTAX=XPiAX.''XLHTH
DELTAY=YnAX.-'YLNTH
NNG=0

c
CA _L PLDTS

no lie! L=l p i£

HNG=0
READ 117) TL
YflttH=lJ.

xmin=o.
c

DO 111 1=1 p£l
no no j=i»2i

XAH<J>=FROJI>
110 YAH':.J>=DAHa? J-L)

CALL H I DE <: XAH , YAH HAH C 1 ? 1 5 p UAH C 1 S > WAH < 1 p 3 ) WAH CI p 4 ) ? MMG p M
AXD I

M

p MD p MD p TL p XLNTH p YLNTH p XM I M » DELTAX p YMAH p DELTAY

>

111 CONTINUE
CALL PLOT (14. p-£. p-3)
NMG=0

IIS CONTINUE
CALL. PLOT CO- ? 0. p99SO

113 STDP

114 FORMAT <:SM?HKF10.3?£K>)
1 1 5 FORMAT <. 1 OX p 3HJ = p 1 4 p £Xp 4HMU = p F5. £ p £X p 4H Z 1 = p F 1 . 3 p £X p 4HZ

i£ =?F 10. 3>
116 FORMAT CIS)
117 FORMAT CSAHIO

END
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Subroutine FOURAN uses subroutine FORT (provided by the computer

center) to compute the discrete Fourier transform.

SUBRDUT I HE FOURAN ( AC ? HTDT

)

CDMMDN .-CHTRL.-' NEQREC » T ? DT j ACMAX j XETA ? F , T

I

, T ? CE£ , NDUT < 6 > ? HED < 3

>

REAL AC < NTDT) > T I ME ( 1 OSS > s PAC < 1 OSS

)

j P I AC < 1 OSS

)

REAL A 1 C < 1 0E4 ) ? S <. £56 )

COMPLEX AAC < 1 0S4 > ? A < 1 024 >

N=50

DD 101 1=1 j 1000
101 AAC<I)=AC<IJ>

DD iOS 1=1 01 ? 1024
102 AAC<I)=0.

DD 103 I=l?10£4
103 A1CU)=AAC<I>

CALL FDRT <AAC? 10»S»

1

> IER1>

DD 104 J=lslOS4
104 A<J)=AAC<J)

DD 105 K=H?10£4
105 A«CK> = 0.

::ALL FDRT <. A ? 1 ? S ? -£ ? I ER3 >

TN=0.
DD 106 1=1 j 1024

l N= I N+DT
TIME<I>=TN
AC<I>=A'sI>

106 CDNTINUE
PRINT 107? <AC<I)5l=l»S56)

RETURN

107 FORMAT <5aX?E14„7>>

END
SUBRDUT I NE OUT C ACC s VEL * DISP > NTDT j NEQ

>

PRINT AND PUNCH RECORDS

CDMMDM •CHTRL.-- NEQREC) T? DT? ACMAX* XETA > FO? TI > TOp CESs NDUTC9> ? HEBC4> s

1CCCE2
DIMENSION ACC < HTDT >? VEL<NTOT>? DISP<HTDT>
DT5=5.*"DT
I F < NDUT < 1 > . HE . ) GD TD 101
PRINT 113? HED? NEQ
CALL PR IN :: ACC? NTDT ?DT5>

101 IF < NDUT < 2 > . HE .0) GD TD 1 OS
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PRINT 1145 HED?NEQ
CALL PR IN CVELjNTDTjDTS)

102 IF <NOUT<3).NE.0'> GD TO 103
PRINT 115? HED?NEQ
CALL PR IN CUISPjHTDTjDTS)

1 03 I F <. NDUT < 4 > . NE . ) GD TD 1 05
PUNCH 117 j HEDjHEQjNTDTjDT

ft. Si ft. ft. ft. 'M ft. Si ft. ft. Si ft. Si ft. ft. ft.

ft.

THIS CHANGE MAKES PUNCHED ACCELERATION COMPATIBLE
NITH PRDGRAM DVNMOD

KKK=HTDT.'-S
DD 104 JK=1jKKK

I=8»:.JK-7
1 04 PUNCH 1 1 £ j ACC < I ) > ACC < I + 1

)

j ACC < I +£ ) ? ACCa +3 ) j ACC CI +4

)

t ACC C I+5> p ACC
1 '.. 1+6) j ACC <. I +7 > j JK

Si

ft.ft.ft.ft.ft.ft.ft.ft.ftft.ft.ft.ft.ft.ft.ft.

105 IF (NOUT<5:j.NE.0> GO TO 106
PUNCH 118? HED?NEQ?NTUT?BT
PUNCH 1 1 6 j i. VEL < I > ,1 = 1 , NTDT )

i 06 I h < NuUT < 6 > . NE . ) GD I 1 07
PUNCH 119? HED?NEQ?NTOT?DT
PUNCH 1 1 6 j C B I SP < I ) ? I = 1 t NTOT >

ft. ft. ft. ft. ft. ft. ft. ft. ft. ft. ft. ft. ft. ft. ft.

ft.

THIS CHANGE ALLOWS PLOTTING OF ACCELERATION?
VELOCITY? AND.-'OR DISPLACEMENT TIME-HISTORY
OF GENERATED EARTHQUAKE

1 07 NCHCK=NDUT C 7 ) +NOUT < 8 ) +HDUT < 9

)

IF CNCHCK.EQ.3) GD TD 111
CALL PLU l

S

CALL PLDT C3.j 1. ?-3)
IF CMDUT<7>.NE. 0) GO TO 108
NQUAL=1
CALL PLT < ACC ? NTOT t NQUAL

)

108 IF CNDUTCS^.NE.O) GO TD 109
NQUAL=£
CALL PLT CVEL's NTDT > NQUAL

)

1 09 I F C NDUT < 9 ) . ME . ) GO TD 1 1

NQUAL=3
CALL PLT CD ISP ? NTDT? NQUAL)

1 1 CALL PLDT < 0. ? 0. ? 999)
iii CuNTINUt

ft.ftWiftft.ft.ft.ft.ft.ft.ft.ft.ftft.

RETURN

HE FORMAT <8F9.6?I7)
113 FORMAT <1 H 1 ? 4A 1 ? 5X ? S6HACCELERAT I ON RECORD NUMBER ? 1 3-V6X ? 4HT I ME ? 5 C

11£X»8HACCN Cb)))
1 1

4

FORMAT CI H 1 ? 4A 1 ? 5X ? ££HVELOC I TY RECORD NUMBER ? 1 3-'V6X ? 4HT I ME ? 5 < 8X ? 1

18HVEL CFT-'SEC)))
1 1

5

FORMAT a H 1 ? 4A 1 ? 5X ? E6HD I SPLACEMENT RECORD NUMBER ? 1 3>"V6X ? 4HT I ME ? 5 <

iiiXj9HDISP (>T)))
116 FORMAT C8F10.4)
117 FORMAT C4A10?1£H ACCN REC
118 FDRMAT '::4A10?1£H VEL REC
119 FDRMAT <4A10?1£H DISP REC

END
SUBRDUT I NE PR I N < A ? NTOT ? DT5

)

DIMENSION AC NTOT)
AMAX=0.
AM I N= .

ORD? 13? 7H NPTS=?I5?5H DT=?F5.3)
DRD? 13? 7H NPTS=? 15? 5H DT=?F5.3)
ORD? 13? 7H NPTS=j 15? 5H DT=?F5.3)
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nn iui i=IjNtdt
IF (. A < I > . GT . AMAX 5 AMAX=A < I >

I

F

<-. A : I > . LT . AN I H > AM I N=A <. I >

101 CDNTIHUE
Nl = l

N£=5
TT=0.

1 02 PR INT 1 06 j TT s < A < I > » I =N 1 p MS

>

if cns.eq.ntdt> gd td 103
Nl=Nl+5
N£=N£+5
TT=TT+DT5
IF <N£.Gl»NlDT) H£=NiDl
GD TD 10£

103 PRINT 105
PRINT 104? AMAXsAMIN
PRINT 105
RETURN

C
/•/-,•'• ,5Xj 6HMAX = >EE0.3p3Xj
;ixj60c: ih*>>
CF10.35 1P5EE0.3J

6HMIN = jESQ.SjWW?104 FORMAT <

105 FORMAT <

106 FDRMAT <

END
SUEROUT I HE PLT < A > NTDT j NH

>

THIS SUBROUTINE PERFDRMS THE PLOTTING DF ACCELERATION?
VELOCITY? AND-'OR DISPLACEMENT TIME-HISTORY OF GENERATED
EARTHQUAKE. THE SUBROUTINE USES GOULD ELECTROSTATIC
PRINTING ROUTINE AVAILABLE IN CDC SYSTEM LIBRARY.

DIMENSION A'::NTaT::<

COMMON --'CNTRL.-- NEQREC > T ? DT ? ACMAX > XETA t FO > TI » T 0» CEE ? NOUT < 9 > i HED < 4 ) ?

1CCCES

amax=o.
AHIN=0.

DO 101 1=1? NTDT
IF (A<n.GT.AMAX> AMAX=A<I)
IF <A<I).LT.AMIN) AMIN=A<I>

101 CONTINUE

DY=<AMAX-AMIN>
BX=1.£5
xl=tvdx
AY=1.

ioe ndy=ay*dy
if <ndy.gt.io> GO TO 103
AY=AY*: 10.
GO TO 102

1 03 ndy=fldat < ndy+6 ) •'6

.

dy=float':ndy>.'-ay

aam i n= i f

i

x c -am i n-'dy+ 1 . >

AAMAX= I F I

X

<:. AMAX.-DY+ 1 . >

YL=AAMAX+AAMIN
AAMINN=-AAMIN*BY
CALL PLOT < . ? AAM I N ? 3

>

DO 104 I=£?NTOT
X= <. FLOAT <I - 1 > *:DT > .-'DX

Y=''Aa>-AAMINN>--DY
CALL PLOT <XjYjE>

104 CONTINUE

F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F

G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
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1 Ub

107
i 08

ALL PLOT CO. > AAM IN. 3)
ALL PLDT <XLjAAMIN!.£)
ALL PLDT CO. t 0. > 3)
ALL AXIS C 0. ? 0. t 1 OHTIME CSEO < -1 0> XL? 0. , 0. > DXj 0>

IF CNN.EQ. 1) GD TD 105
IF CNN.EQ. £> GD TO 106
IF CNN.EQ, 35 GD TD 107
CALL AX l S < . j . j 24MACCELERAT I DM C PERCENT G)

»

S4j YL j 90. s AAM I NN > DY j
-

11)
GD TD 103
ALL AX I S < . .« 0. < 1 7HVELDC I TY < FT'SEC > j 1 7 j YL j 9 . j AAM I UN > BY j - 1 >

GD TD 103
ALL AX I S C . j . j 1 7HD I SPLACEMENT C FT > t 1 7 j YL » 9 . s AAM I NN j DY >

- 1

)

CALL SYMBOL < .

5

1 8 .

5

j 0. S j 38HEARTHQUAKE I NPUT SPEC I F I CAT I DNS : > 0. 0»

ALL SYMBOL <1.
ALL SYMBOL CI.
ALL SYMBOL CI.
ALL SYMBOL CI.
ALL SYMBOL CI.
ALL NUMBER C4.
ALL NUMBER C4„
ALL NUMBlR C4.
ALL NUMBER C4.
ALL NUMBER C4. ?

7

L=XL+3.
ALL SYMBOL CO. j9.

j

ALL PLOT CXLj 0. ?-3>
RETURN

END

, q „ 3 i . 15
is. 1 . . 15
j 7.

9

. . 15
i 7 7 < . 15

"7 C
? r . J - .15
, 3 o 3 > . 15
is. 1 . . 15
?
-

. 9 > . 15
? 7. 7 . . 15
»7.5 > . 15

1 4HBURAT I ON < SEC > , . , 1 4

>

£ 0HT I ME I NCREMENT C SEC ) j . 5 £ )

7HBAMPING? 0. s7>
SSHNATURAL FREQUENCY CHZ>»0. j££)

> 14HBECAY CONSTANT i. 0. 1 14)
T? 0. 0? 5HF1 0.3)
DT.i 0. sSHFlG.S)
XETAs 0. j5HF10.4)
F0j 0. j5HF10.4>
jCCCE£j 0. j5HF10.4)

HED? 0. 0j 40)
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PPiji RAM MEM if
:,

i. <. I flF'iJ f i ON I PU r , PENT » PUNCH >

VERSION DNM&7

THIS PROGRAM IS CHECKING AND PLOTING
THE FINITE ELEMENT MESH USEO IN PRNCRAMS
5* ICNMriDF* j EXCAV ? STL] HER
ALSO PUNCH THE INPUT DATA HI THE ADEQUATE FORMAT

DIMENSION :'A(S
dimension x<£0(
D I MENS I UN HI
DIMENSION HI

D I MEMS I OH EC

>j VA<r' : ? >'T'<i':.
''

j YP<6
) ? Y < £ > ? MM < 3 ? 3

3 ) j N J < 3 > j NK < 3
3 > i F •'. 3 '> t PSR < 3
-: '> ? GAM < 3 > ? PS ' 3

GAMA<30Q)s KNXfiOO)

READ 1£4j TITLE
PRINT 1£4j TITLE

CALF PINTS

RECTI I £9 j XMAX j YI'IAX ? SCF j TFX s T FY
PR I NT 1 £9 j XMAX > YMAX f SCF) TFX j 1 FY
MC-0
SE=i„

CALL FACTOR <SF)

CAl I. PL NT <0. ,1. , -S)

READ 130- HPGIV
IF fMPGIV.EW, 0:> GO TO 1 Op
III] 101 J-IkNPGIV

READ 131 j ...IHO-ICJ^Y':: )>

YC-Y<J>.-SCF

CALL SYMUGL >: XC» YCs . 1» 11 j 0. j -1>

1. :l C Ni 1
1 [ Hi IE

PLOT Dl= THE DIIUDARIES

102 YA'CD'-O.

YA'^J-SCF
xa < p "> -YA >! £ y

CAl I AX I S < . j . !• £ Ol IHNR 1 /UN T AL D I RECT 1 OH ? £ j XMAX « 0, - XA < 1 > s X
1)

(. £ ':> > o

CAL I . AX I S < „ t . j 1 CI IVERT 1 CAL D I PECT INN j 1 8 j YMf iX >30.> YAO > s YA C £ ) s - 1

:

CALL PENT O:

CALL PLOT O
CALl PLOT O

.1, CATAX ?::.:'

;max?ymax.£
MA- t 0.

>

r>

103 READ 130? NiCAL E:< HELEN? NNDD
PR 1 NT 1 3 > NSC Al. E ? NFI .EM > NNOU

NC HlC +

1

IE (HSCALE.LQ. 0> GO TO 115
DO 104 N=1?NNQD

READ 131 j KN(H>jX'::H>nY(N>
104 F

:'R I HT 1 33 > KM < N ':>

t X < N ) j Y < H >

PRINT 1£0
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i 'Pi L CiRAPH c i jHMiQj O'Xj Y>

HI J 105 NL"L=l»NEI.t'M
READ 1 32 < ML C r IEL ' > N I < H£l > j N .1 : NEI. > .. NK

C

PRINT 132j NLCNEl >»MICHEl ) >NJCNEL>sNK
IDS CON I IHUE

MODULUS Dl" riA.:i'il-llV

DO 106 I=1jNN0D
READ 12'5» HMjf EC D
EECI>~EECi:>*] U."*'*-5

106 CONTINUE

PUISSUN S RATH]

IN J i07 K=i?NNOTi
107 READ 125 j NLsPSRCIO

SPECIF IC GRAVITY

DO 108 L=l?NNOB
READ 125? MLLsGAMCI.}
PRINT 126? EEt'L>5PSRt.L>jfiAH<L.>

j 08 CONTINUE

r!i-;i >

CNEL)

BO 109 J-IjNFLEM
MNC.N i)-NKJ »

HM<J'2>==HJ<J)
KIM .;' | - "; ';, —Nt' f" |

')

109 CONTINUE

IF CMSCALE.FQ.3> UEI TTJ 113
IF CNSCA! E.I.T.2) GO I'D 13 1

IRANSLATATIUN OF AXIS

DO 1 1 J-1. ? NNOD

YCJ?=Y<J>+TFY
110 CONTINUE

PLOT OF TRIANGU! AR I1FSH

I 11 CONTINUE
]|f|

i
j p T-~ ( j j t'j CM

NFL-

1

I' I=NN<NFLj 1)
E..l=NNCNFl <p)
tk-nm<:nel»3)

KP< i :>-::
: 1 1 ;

HP';g -, V :jj;
HP'

" •";
) =H :. I TO

HP' .•1
:<=-H

5 ci ::

YP •:i J —V :. T I !>

! 1

* c«
-' — r ::lj:j

YP **"!

:> "V ; t k >

YP

'

:

4 J =Y "a;'

YP

'

c
:> =

;;p> s
---{• "'

'-! 5 !-

KP :6 •=S
( p

,

>-s ~:F

r-RINT 121
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CAl i. I INF.. 0;i>YP«-1s 1 jIjI.5

PREPARE DATA U," NIL PHYSICAL PARAMETERS

i:a ) -= < ee < i t > h f :e <: i j ) +ee < i k ) > sz* .

ps < i >

=

<: psr at> hPSR :: i j

>

-ipsr < 1 1<

)

> /3 .

GAMA < I ) ~ (. GAM < T J > GAM < I J > +i"JAM (IK) ) -"3

.

r.n tn ue

vixvai
XC-KC/'SCF
YC=YC--Sr:F

+X< [.i)'i-}'(lK)

+Y<IJ>-iY<IK)

CALL NUMBER < XC » YC , . 1 j I » 0. » P.H 1 3

)

lie (.nil

r

[nil:

Li] i a j is

firii: JIUMENSTDNAI LLE-.MENT

113 DL1 114 I = 1jHF.LEM

II=NN<I« L)

TK=HM>::i^a>

KP<i>=xan
xp<s>=xaK>
YP<i)=Yai)
YF"'£) = Y<:! IK)

XP<3)~0.
YP<3)-=0.
XP C 4 ) -SCF
YP<4)=SCF

CALL LIME

11 4 CONTINUE

XPjYPjSj 1,1,4!

if ac,GT. i) on r 1 1 3 o:

GO ID 103

115 CONTINUE

PUNCH INPUT DATA F UW. DVNAMIC + STATIC F'.E. PRIlGRAM?

na U6 i=i:»ne'i. f:m
PUNCH 1 i?fi s Ml .. < I ) n N I < I ) j N J(I)! ML < I ) ? E < I > t PSU ) j GAMA < I

)

116 CllN'f rNUE

no ii7 i=1jNEL.em
1 ] 7 PR J. NT 1 E ? j NL < I > > N I < I ) ? NJ < I ) » NK ( t ) > E < I ) ? PSa ) ? GANA < 1

)

un 118 i=i ? NNan
PUNCH 123? KNa)r.K<I>jY<I)

118 CONTINUE

ua 119 i==i!>NNari

119 PRINT 188 j KN(I)p:«DjY(I)
CALL PLOT ''. 0. j 0., 5 999)

STOP
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•::. |' i i: I'M.'i.!

.21
P'P

[2A

.39
3
31

in
f [M',m r

F DFT'hT
F DRi'lAT

FORMAT
format
F DRi'lAT

F DRf'IAT

F rJRMAT
F DRMAT
FORMAT
F'GRHAT
F DR.1AT
F'FIK'MAT

LNJJ

IN 3.

IK?
4 IS
115
3A1
IIP

5K1

:ia ?

: 4 1

5

4HKI

:F i

10,'

IS.'
5? 31

>2F
! "I "?

J 15
10.:

<6Fi;

4 1

4HYP i t->" J. ;>
.. s:

?F1 0.3>

276



PROGRAM STFT..I1U < TNF U T s OUTPUT

>

$ ty [ -ty #] :$ ;## t
p- $£

:
i|»; $^ £^ #$ $: #>* > $; :# :$: ft ;

: [i:
:
tp^ :#; >;: #: :

(|j: $f yi; ft .fc ;« ;fc :# ftp: :ji 3 -

$,; $:^ ;£ # -g ;4f# # itr^ j-jj p ;
t'v :$:$:

version i)if3?/

FINITE ELEMENT PROGRAM PERFORMING AN UNCERTAINTY
ANALYSIS l]F AN UNDERGROUND STEADY FLUM
COUPLED WITH AM INFERENCE MODEL ( PROGRAM INEMUO )

TRIANGULAR ELEMENTS WITH 3 D,F. ARE USED

XNUD
YNDD
PKX
PKY
HEAD

•= H--CDORBINATE
= Y- -COORD I NATE
= PERMEABILITY COEFFICIENT IN X DIRECT'
-- PERMEABILITY COEFFICIENT IN V DIRECT,
= GIVEN HEAD

REA1 . XNUDE (. 8 ':>

> YNCIDE •-. 8 > ? Q < 8 ) J CT < 8 >

REAL PK<itS»£>
REAL AK ( 8 n 4 > ? H < 8 >

REAL AT "C8 j 4 > j DKXAK < 8 s 4 > ? DKYAK < 8 s 4 ;

PEAL DXQO30>jDY0>;80>
REAL VAR < 8 ) ? CVAR < 8 >

INTEGER IB':.80::>5 1 E <1 .1 S j 3 )

COMMON .^EQNTiEX.-- NEC! > NUMEL j NBAN D ? UNO] H .S

COMMON .'REG I ON-- A > B » C j D ? NGR I DX > NGR I DY
DAT ft A ? B 5 C ? D '

. j 1 . j . j 1 .
/"

DATA Nl 1DESD j NUMEI 0? I. EVEI .s45 > 68 s £v
DATA NRITMB j NCOL D-'S - 4 0-'

READ AND PRINT INPUT DATA

101 READ 10? j NFLftG

READ 90sNGRIDX 5 NGRIDY

IF a-IFT AG.ETj. 0) GO I'D 106

CAI I DATAIN 03? PKj KNODEj YNDDEs IBs IEsNODESPj NUMELD » LEVEL)

CAI I . Mb SH < XNI IDE -
l
i NO.I IF. ? I R , I

E

, NUMELD 1 NO DESD

:

CALL BBWDTH CI E- NUMELD

I

CALL SECOND (TO)

CAI .L FCiRMEQ < AK ? Q j I E s I B s KNDDE j YNODE j NROWD ? NCOI ..D n NUMELD t

1 LEVELs Hj ATj DKXAKs DKYAK? DXQ? DYQj PK ')

CALL SECOND (TO

EXTIME=T1-T0

H
A
A
A
A
A
A
A
A
A
A
ft

A
ft

ft

ft

ft

ft

ft

ft

ft

A
A
A
ft

A
A
A
ft

A
A
A
A
ft

A
A
ft

A
A
A
A
A
A
A
ft

A
A
ft

A
A
A
A
ft

ft

ft

ft

A
A
A
ft

ft

A
A

A
A
A
A
A
A
A
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print 100, ex riM

OAi I. EQSOL a'lK? !''! DKXAKj BXQj BKYAK* DYQp NRDWDi NCULD? CTj VARs CVAR)

caij. second a2>

soltm=te-ti
total-tp-to
PRINT 109 j SDLTM
PRINT UO ? TOTAL
F R 1 1 IT 1 1 1 j NEQ ! NBANO i NUNEI . < NNODES

IF < LEVEL. ME. S^ 00 TO 103
pr tut lis
Hi.1 I OP IF-isNNOOES

I Rl. H-:V=Hb" ADC XNt IDE (If) j YNPBE < IF ) )

APRXV-H<IF')
I F < l B < I F ) . NE . ) APRXV Q < I B < I F ) )

ABEkRI.JR="AB S C T RUE V APRXV >

PRINT 113? IF j TRUE'vS APRXV j ABERRDR
op corn inue
03 CON r INUE

ERPMAX^O.
DO 1.04 IF=i?NNra:iFS

IF (IB<:iF>.EQ. 0) Gil TCI 104
T ROE-HEAD < XNDDE (IF)) YNPDE (IF) )

APRXV=Q<IBaF))
ABSE RR=ABS ( T RUE-- APRXV )

I F < ABSERR . ijl . ERRHAX > ERRMAX^ABSERR
04 CUNT INUE

PRINT 114 j ERRMAX

"ALL GRAB CXNDDEj YNMDE? FKNUKELDj IE)

PRINT 115
NF>1
DO 105 I F---.1.- NNODES

IF (IB(IK>.FQ„ u> GD "ID 105
PR I NT lib? I F j VAR (. HE ) ? CVAR< NE )

NE=NE+1
05 CLINT INUE

GO 111 101
06 ST (IP

0? FORMAT <8J5)
08 FORMAT (IX? i HFORNATION EQUATION TINE El 0.5)

iFIO.

= s 15

09 FORMAT <lXs £1HI,0UAT.I'GN SOLUT. TINE<
10 FORMAT <1X? PIHTUT'AI.. SOLUTION TINE -?F10.:5)
11 FURMH'T (IX? 14HNUNBER OF EQ =s 15?.'* IX? 14HBANDN1DTH

i 1 4\ INUMBER OF' EL M" j 1 5 >
•-"

> 1 X j 1 41 1NUI1 BER OF' Nl JB== j 1 5 )

IP FORMAT (IXj 39H NODF. TRUE SOL APPR SOI.. ABS F.RRDR)
1..:: FORMAT ClXn I5j3F:I 0.5)
14 FORMAT aX» P4HMAXIMUN ABSOLUTE FRROR =jE10.3)
15 FORMAT (IX? 33HNUDE - VARIANCE -- COEFFICIF.NT VAR)
1

6

FORMAT ( 1 X > 1.5? Fl . 5 ? Fl 0. 5)

EMU
SUBROU T I NE DATA I N < Q t PK s XNDDE s YNODEs I X s I E j Ml IDESD s NUMEL.D j LEVEL .

)

READS AND.-'OR PRINT'S THE INPUT DATA

IX

!
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:m *.&.*&#.#. CONSTANT'S DEFINITION w»'#-'#w#. :smw.

REAL XNUBEaiDDESD) > YNODE C NODE-SIO p F^KtHUMfL.Usi £? pCKNUDESD)
] N'l F i-iER IE c NUMF.I D , 3 ) 5 1 X < NOHESD

>

common ••eqhliex.- neq? numelj nband* nnodes

READ NODE Nil. ? BOUND. UUND. * X-CUORDp Y--CNORD

NF.O: n

1 1.1 1 !'.:[•' A lj 1 07 - NO D ? IX 1. 5 XNOD , YNLID » HEADV
tf cnoilfc-', co i3U "in iop
ilNuTjES-NnH
XHnDECNriD^-XNOB
YNUOEa-iriio-YNOD
ixa-iaio=o
IF UX1.EQ. 1 ) &N 11.1 i 01

NUMBER THE FREE riF.C-.REES OF FREEDOM

NEQ-NEQ+i
IXCNOJO-NEQ
Fill I'lj 101

10c! CO! I FINAL

READ Et EMENT INCO DF.NCIES

1 03 REA 1 OR t NEL » 1 1 > ..Up KK t PKX j PKY

PKX =' 1 0.** <--PKK>
PKY«PKX

IF CII.EQ. 0> GG iLI 1 04

NUIIt L.=NEL

PKCNEL.p D=PKX
PKaiELpP.)=PKY
I EC NEL. ? L> =n
JEXNELj^-JJ
IE ''NEL ?3>-KK
an rn 103

104 CUNI INUL

LIU I PUT INPUT DATA

IF <LEVEL.Nfc".£) RPTURN
PRINT 109
DO 10s NUD-"i>NI •HIDES

PRINT 1 Lfl, Nim, rK<NDlOjXNmJE<Mim>pYNrJDE<NnD)
1 0*5 CONTINUE

PR I. NT 1 1

1

HD ] 06 NFL 4 jNUMFL
PRIN'I 1 1?.* Nil. j 1 EC NEL - 1 > > IECNELp E)s IF (NFL s 3> p F'FXNFI. p 1 >p PK<NEL» 2

1 >

U.16 COM INUL
RETURN

107 FORMAT <£I5j3FiO. 0)

103 i LlKi'iAT ( 4 1 5 j £F 1 „ 7 >

109 FORMAT ax? 33HNPDE ID X-COL1R Y-COOR HEAD)
110 F DRMAT < 1 X ? I S ? £X p 1 5 p EX j F 1. . 5 j F 1 0.3)
111 FORMAT (IK j 34H ELEMENT I J K KX KY)
US FORMAT aX?4I5.-r:F 10.5)

END
SUBROU"! INF EDUDTH aEpNUMELD)

COMPUTES MAX NODAL. DIFFERENCE AND SEMI -BANDWIDTH

B
B
B
B
B
B
E
E
B
B
E
E
E
B
B
B
P
B
B

B
E
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
E
E
E
B
E
E
E
B
E
B
B
E
E
B
B
B
E
B
B
C

C
c
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TEtNELjIO)
MAXDIF=LL

li In GEK IFXNUMfc'I.IhC'O
CIJ'TMTIN /EtfMDF Y,/ NL't-J? I'lUMl- 1 .. NKiUlA NNtTOFS

NAHDlF=-0
HO 1 01 NEL"=1jNUNEI.
0t.] 101 J=1j3
DO t 01 K=1j3

u.-iriBsar cmi "i. ?j
IF CLL.liT.MAXJJlF

101 CONTINUE
NPAHD-MnXDlF+l
PR I NT s ^BANDI-I I D'J H?" , NBAI IB

RETURN

END
SUPRC1UT I ME I. I NEAR :. ST I

F

, BXS f'lF s DYST I F h RS j L EVEI .

)

COMPUTES FHE ELEMENT STIFFNESS MATRIX

REf'il ST 1 F < 3 ? 3 > j DHST [ F < 3 j 3 ) ? DYST 1 F C 3 s 3 > s RS < 3 ) » AJ

>

>?H<: .ftl' '«AS<£?

F:fjl .i-IOri .••PFPMBl..-- PKX.«PKY
CUHnilN --'El. :::>!'!. :C-- HI tuYIIi

DAT T A ii H" AT s AS-
i?4 7

:* .3764030627
PIP
51P

X JJ? Y

:654j .

'

..UXKKjYKK

3867'51346i , 153051 0c!57» .6445489

DLT I ME DUMMY VARIABLES

RF-HKK -XJJ
A3 XII -HKK
a3=hjj-pii

Bl-YJ-J-YKK
BP 'i KK- Y 1

1

B3 vn-YJJ

CO! ipl.lTF ARE: A

AF'i i'i3 :='::A3*:BP A£'*;B3!»

COMPUTE DUMMY CONSTANTS

RPlU A-.5.---AFFAP
DUMY -APFAP
AlAl=Ai*Al
A1AP~A] *'AP

A J A3=-Ai*:A3
ARA£"AP*AF:
APA3- AP*t-i3

A3A3~A3^A3

KtBl=Bl*Bl
Blt'P=Bl*BP
B1T:3=B1*B3
B£PP~B£®B£
P£B3~B£®B3
B3B3=B3*B3

COMPUTE STIFFNESS MATRIX AND ITS FIRST PARTIAL. DERIVATIVES

1 ) = (. PKX*B 1 B 1 •+ PKY*A 1 A t >

?£) = ( PKX*B 1 BP i-PKY'#A 1 A£ J>

sTipa
ST I

F

< 1

ST ifa
ST If c: Sj £ > = :: PKX*BPB£-: PKY*A£A£

>

ST I F < £ j 3 :> = < PKX*B£B3-: PKY*A£A3 >

ST ITX 3 j 3 > = < PKX*B3B3 i-PKY* ;A3A3

>

STIFtrJ:. i:i=STIFa?£>
STIF<3» l>=STIF<li.3>
STIF<3!.£>=STIF'::& 5 3;'

*RAREA
*RAREA

> = < PKX*B 1 B3-I PKY *A 1 A3 > *RARE

A

*RAREA
*rarea
^RAFEA
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compute derivatives uf

DX'Si'IEds 1>=B1B1*RAREA

rut:
IAT

DXS"I IF< I.

riF'a
hifcSj

m>

DH:--IIF(£j 0=D

13 F

=BlB£ ?SRAkEA
~B1B3*RAR£A
"BSRS-KRAREA

DXS I IFCS? 3><BSB3*RAREA
I IF<3j3>=B3B3»:RAREA

fK(lj£)
riFOj l>=liXS71F<:tj3>

HYSTIF

<

BYSTIF
DYS r I F c

DYSTIF
nvsriF
DYSTIF
DYS r IF':

DYSTIF
DYS I IF

^=DXST1F<S?3:

? i>=AiAl*RAREA
£>- AlA'f^RAFFA
3)=A1A :*RARE A
if"1 ftc,

.Pi\m?P,'iE&
3>-A£A :*KAI'.FA

3>"A3AS'*=RAHF_ A
i> -dystifa -s:

i. 0--DYS1 IFa ?
3";

S>=--DYST JF<;?j3::

-1.1,RS'
F:S(R> =RS<3>
RS>:i>=RS'::e:j

COMPUTE RIGHT SIDE

DC! 1 OS 1 = 1 »S
DD 1.01 J-l-S

RL..l=Aia>
TEMP"1,-RU.
RLS-AJ<J>*1"EMP
RI..3=TEMP-RLS
N-AS<I)*I-KJ)*TEMP

CHANGE COORD I NA I L fEM

X~X II ®RL 1 +X J..J-'- Rl ..£+XKK«R 1 .

3

Y=YI I*RL1+YJJ*RLEh YKK*RL3

QVAI..=FLFLX<Xi.Y)
RS<1)=PS<1)+QVAL*RL 1*W
RS < S > -"RS < S > <-0VAL*RI
RS < 3 > -RS < 3 > +QVAL*RL3

101 i :I1NTIMUE
ids continue

]"ii ] i 03 I R ! 1 - 3
RSaR:J=RSaR)*Dl.lHY

I 02 COM 1 l Ml .IE

:c«. :

'i **'** DEBUG ft'WWW ASiffiti

IF a.EVEI. .me:.5> return

1 04

iu^

1 06

107
103

PRINT 10.'

DO 104 IF=1j3
PRINT 103- <S

CONTINUE
PRINT 109
DO 105 I F= 1 ?

3

PRINT 108? CD
CONTINUE
PRINT 110
DO 106 IF-=1j3

PRINT 108 j (DYSTIF (IF*
CONTINUE
RE"I URN

ir<IF»JK>s JF~1j3>sRS<IF

IF (If ? jf:>: •1,3)

JF~l!

FORMAT OX j 311-1::

FORMAT aXs3F10,
"IFFNESS MATRIX AND RIGHT
uSiXjF10.5)

:i»E>
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END
FUNCTION FI..FLX<XjY)

FLUX - ~£,*l£MP<:X-i-Y)
1„.

1~

r L FI.X=0.
1...

f
RE 1 1. II !M

109 FORMAT UXs 35FMTE R/VATIVE DF STIFFNESS MATRIX DKXS) D
J 10 FORMAT (IK) 30HDFRIV OF STIFFMESS MATRIX UKYS) D

Ii

n
E
E
E
F
e:

F

f;

e
i.-..r-0'i E

SI IURUU I IMF FT1RNER CAKj Q> IE? IXs XHODCj YMQPF.» NRUWDj MCOLUi NUMEI.Dj LF-VEL F
1 1 H j AT j DKXAK ? DKYAK j DXQ > DYQ ? Pl< ) F

I'. F

C USE'S DIRECT STIFFMESS PROCEDURE TO ADD THE ELEMENT F
STIFFNE.SS MATRICES AMD LOADS ID PROPER LOCATIONS F

C III ASSEMBLAGE STIFFMESS *AK* AMD 7FLUX f-O.f- F
C F

REAL AKOTRDmD? NCMI.D> , Q<NROH]J> j XNUDECNROmD > YNOCiE<NROWO> > AKNREHJDr-H F
1 COI JO, DKXAK < NRL1WH * MCI'JLH > » DKYAK <. NRCJWD j NCDLD > F
PEAI . H < NRUWD > ? DXQ < NEl 1UB > < DYQ < NRP.WD > j PK ( MUMEL D ? 8 ) F

I M'l I- bER I F < MUME LD ? 3 > ? I

X

< NRUMD > > L- M < 3

>

F
common •••eijmdex-•-

r ieq > i iumel ? nbanh > ungues f

COMMON /-PERMBL.- PKXjPKY F'

COMMON .'EL S PEC--' X 1 1 j Y 1 1 > XJJ j Y J.J ? XKK » YKK F
REAL , ST I F < 3 ? 3 > > RS C 3 "'

? DXS C 3 ? 3 > ? DYS < 3 > 3 ) F
F

INI ITAl IZE s«AK* ? ?Q? F
F

DO 1 03. IR=1jNEQ F

GKIR>~0, F"

00 101 .JC-=i?MBAND F
AK<IRjJO"0. F

n"T< IF: j JC> :- 0. F
DKXAKXIRj.JO-O. F
DKYAK':' IR, JO --0. F

101 CONTINUE F
10?. CONTINUE F

F
COMPUTE BOUNDARY CONDITIONS F

F
DO 103 IN^lsNNUDFS F

H<IN>--0. F
IF <IX<IN>.FO. 0) H<IN>=HEAB<XHL1DE<.IN>jYNDI.iE<IN)) F

103 CONTINUE F

C F
C FORM EQUATIONS F

C F

C F

C SET CONSTANT COEFFICIENTS F

DO 110 NEL= 1 j NUMEL

PKX"PK<NEl ? 1> F

pky--pkc:nel?8> F
C F

C F

C COM; :'UTE ELEMENT STIFFNESS MATRIX AND RIGHT STDE F

C F
C FIND ELEMENT INCI DENCIES F

C F
II=IE<NEL»15 F
JJ=IE<NEL>£> F
KK=JE<NEL>3> F

C F
C COMPUTE ELEMENT SPECIFICATIONS F
C F

XII--XNODEUI> F
YII-YNODF. (II) F
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Hjj-KMarjEXjj)
Y U-YMUDtXJJ)
HKK^XNLUTECKK)
YKfOYNOBECKK)

FIND THE CORRESPONDING DEGREE DF FREEDOM

Lf'Kl) = II
LM<?>=JJ
LM<3)=KK

CALL S.--R L.. IfCAR

CALL L INEAR CSTTK j BXSs DYSsRSi LEVEL)

1 04

J. 05
1 Ob

1 07

108
1 09
110

DO 10b IF=i?3

hRnw=Lf'iar:5
].XNRnO"IX<NRUO)
IK aXUROU-EQ. 0) GO TCI 106
q < i xnriim ) gk i xnrdn > +rs < i r

>

J IEriP"i--IXNRUM

na i art jf-i,3
ncgl=okjf)
ixncol-ixoicdl >

IF aXNCOL.EQ. 0) GO TO 104
IXHCQL-- lyMCHL+JIEM^
IF CIXNCDl .,LT. 1) GL1 Til 105
AK < I XNRUN j I XNCI IL ) ="AK < I XHRGW p I XI ICl.ll . ) +S I" I K GF j JF )

GO TO L 0*5

CONTINUE
Q < I XI IPl U I

':> Q < I XNROW ) -S Tl F< I \ >.. IF ) *l I (. I ii.LH . )

continue
cunt ini jf

IIBAN£i-41IN0a-ILG.'.MBi :lNro

ASSEMBLY DKXAK j DKYAK

Jill 109 IF=1»3
NRDW=LM<14 )

ixnrgu-=iX';nrou)
jf cixnruileg. 0) go to 1.09

[ rFMp-NBANJi-IXNRDH

Tin 1 08 JF- 1 5 3
NC:[]L=LM<JF>
IXNCOL^IXCUCOL)
if axNcru .egi. o) go i a 107
IXNCOI --IXNCGL + ITEMP
IF a XHCQL , GT. NBAMD ) GO 10 1 08

UK XAK •:: I XNRC'U - I XNCDL > -DKXAK C I XNRUN > I XMCOL ) + DXS C I

F

> JF

:

DKYAK< J XNRUHs IXNCDL)"DKYAKaXNRON:i J XNCOL ) 4 DYS C IF? JF:
AT C I XNRUI J t I XNCOL ) =TT f < I XNRDU . I XNCOI . ) i ST I F :. I F 5 JF )

GO TO i08
CONTINUE
DXQC IXNRDN)"DXaaXNRON) EDXS< IF? JF)*! KNCUL)
DYQ < I XNfirjU) "HYQ '. I XNROW ) +BYS (IF- JF) *T I < NCOL )

CONTINUE
CONTINUE

CONTINUE

**:«:*;.*:;*;**.** DEBUG ** *''&'#*>'-W-w*.
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if a..>:vi-:L.HF.4> return f
TiQ 11 1 I R= Is NEQ F

PP I N T 1 I
r:

i j < AK C 1 R 5 JC ) j JO 1 t M BAND ) ? Q< 1 R .J F

111 CONTINUE F
C F

PRINT 116 F
DO 11£ IF=4?NEQ F

PR I H F 1155 •: DKKAK < I F ? JF ) j JF= I j NBAND ) ? W.9OF) F
IIS CniNTIMUE F

C F

PP..THT 11.7 F
DO 1 13 IF=4 jMF.Q F

pr int 115= c dkyak ci f ? jf ) s jf= 1 ? nband > f dyqup) f
113 cohtinue f

C F
DL1 114 IF-lsNEQ F

PRINT 115? CATCIF? JF)sJF--- Is NBAND) F
114 CONTINUE F

C F
RE TURN F'

f: F

115 FORMAT OX? 1QF5,3) F
-

116 FORMAT C1X? 12HMATR1X DKXAK) F

117 FORMAT ax? ISHI'IATRIX DKYAK > F
C F

Firm f
SUBRUUT [HE EQSi !! . CnKs Q? DKHAKsDXQs DKYAK? DYQ? NRNND? NCDI .Ds Cs VARs OVAR) G

C G
C SOLVES THE SYSTEM OF LINEAR EQUATIONS G
r g

PEAL XC ' ]V C 1 0)? VC 1 1V < t ) ? C VR C £ s f: > G
REAL AKCNEOMD? NCI H.D) ? QCNROWD) ? DKXAKCNRUMDs NCOLD) ? DXQCNRDMD) s DKYAK < G

1 NROND s NCOLD) ? DYQ C NROND) ? CC NROND) ? VARCNRnND) ? CVARCNFC1MD) G
Cat iNUN .'Et!NDF:X.-- NEQ ? NUMEL ? NBAND ? MNOBES G
DATA IPR.--4.-' G

C, G
C G
C SOLVE EQUA'1 IONS G
C G

CAI. I. SOL.VE C 1 ? AK ? Q ? NEQ ? NBAND ? NRTJM D ? NCUL D

)

G
A G

CAI I
.. SOLVE < £ ? AK ? Q ? NEQ ? NBAND ? NROND ? NCUI .D

)

G
C G

NBAND 0--NBAND-1 G
CAI I. VMULQF CDKXAK? NEQ? NBAND 0? NROND? Q? 1 ? NROND? CsNPUND) G
PR (NT 104 j CCCDsI^lsNEQ) G
PRINT 104? (Q(I)( I =4. 5 NEQ) G

C G
DO 101 IF=1?NEQ G

DXQCIF^DXQCIFmCCIF) G
rjXQCIF)---DXQC IF) G

10 I. CONIINUE G
I- 'R I NT 1 04 ? C DXQ CI F ) » I F = 1 1 NEQ ) G

C G
CAI I . SOLVE C £ ? AK ? DXQ ? NEQ ? NBAND ? NROND ? NCOL D

)

G
C G

PR 1 N T' 1 04 ? C DXQ < 1 F ) ? I F= 1 ? NEQ ) G
O G

CAI I. VMULQF C DKYAK j NEQ? NBAND0? NROND? Q? 1? NROND? CsNRDWD) G
C G

DO 10£ IF- Is NEQ G
DYQCIF)=DYQCIF)-4CCIF) G
DYQCIF)=-DYQC1F) G

102 CONTINUE G
C G

CALL SOLVE <£? AK? DVQ? NEQ? NBAND? NROND? NCOLD) G
C G

PR I NT 1 04 ? C DYQ < 1 F ) ? I F= 1 ? NEQ

)

G
C G
C COMPUTE VARIANCES AND CQEFFI ICIENT OF VARIATION G
C G
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DO 103 IA-IsNEQ
READ 1 06 ? HOIJV i. I 'i ':>

t YCOV C C A )

PR .[ f 1

1"
1 05 ? XGMV < I A > ^ YCOV (JA)

xcov < i a > -- 1 o . ;*«- ( - xoov < i a :> ? * i o . ** < -7 >

Ki::nv<iA>^xcrjv<iA>.--iPR

vcuv<iA)=-Mcav;iA>

CCJVRCl! 3 >=XCDV<IA)
CUVR<e!i S> --YCTJV <1A>
cnvR>;ijfj>~o,

VAR c I A > ~DXQ < I A ':> »™?.*CU':fP, <. 1 j 1 > -i-DYQ (If!) «*£*CUVR < 8 » E ) K? . *DXQ ( I A : *:nv

1 G<IA>*CnVR<liE>
CVAR (Ift) =SQRT< AES ( VAR C I A > > ) /"Q f I A >

103 continue

RETURN

104 FORMAT ClXs 10F8.P)
105 FURNAT CP.XsPEl 8. P>
106 F ORMA1 <c;Fl 0. 7)

END
FIJI iCI I LIN HEAIXXjY)

HEAD " FUNDI I nr I COORD I NA I E SYSTEM < I NF . MODEL

HEAD=0.
IF <M.EQ,0-> UEAD= ABSCY •• 75, ) + 14.
IF <X.E:Q.150. J> HEAD- ABS<Y - 75. >

RETURN

END
SUBROUTINE PERM <PKX»PKY>
PKX" 1

.

PKY~1.
RETURN

END
SUBROUT I NE SDL VE < KKK s AK j R » NEQ j HBAHTJ » NRUMD s NCOI . D >

SYMMETRIC BAND EQUATION SOLVER

MATRIX AK IS STORED IN HAND STORAGE MODE

REAL AK < NRUUH > NCOLD > > R < NROND

>

NRS=NEQ-1
MR- NEQ

IF CKKK.EQ.S) GO TO 103

IF CNEQ.EQ. 1> GO TO 107
DO 10£ N=1jNRS

M=N-1
MR=M I N < NBAND > NR-M

>

pivot=ak«;nj n
DO 108 L=£jMR

cp=AKai>L> .•pivot
I---M+L

J-0
DO 101 K=L?MR

..!•=J+l
AK •:: I > -J > =AK < I - J > -CP*AK <N > K

>

101 CONTINUE
AK<N»L>=CP
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}.cifi t.nri 1

1

hue
GO IXI 10?

103 CONTINUE
IK CNEQ.EQ.l) ill

f r i 106
HI J 1.04 N=1jMRS

M-N-l
MR=MINO<NBAHIJ!>riF^-M>
CP=R<N>
r<n>-cp.'Ak<:nji:>

Li!! 104 L=2jMR
[ --Mh L
R<I>-=R<I)-AK'>MjI...)*CP

i 04 COM 'I J Hi IE

PEH'f I.1RM BACK SUBS'l 3 M.'TIDN

R'::i;R>^ka'iR>.-ni<a-iR? l>

no 105 i=i j hrs'
H--=NR-I

M=N~1
MR==MINCKNBANBsNR-M;s

3 il J 105 K-SjMR
L-tH-K
R < H > --R < N > -A'K •:. N » K > *R <L >

105 CONTINUE
RE IURN

1 06 R < MR > =R < HR > 'AK < MR s 1

>

107 RETURN

LNI'i

SUBROUTINE MESH CXNUBEj YNCIDEj IB? 1 E ? NUHEI .!)? ND'JE: SB!:

n ircci ft o ii.;i

:

Ijtl It.KR I L j'i~i i n F" r ip r;-
c p r• i j r~ i 1 1

.**.p p l r: T n

.

-j •:•

I l 4 I -. I -. t,_ '„• I M ! IUU I ~ II I -. V: r. '..j J. Lj 1 1 -J>

REAL. XNCIDECNODESD) ? YHniiEaCJIJESID
I H i'EGtR IB< NODE ivlJ > ? I E < HUHEE P ? 3

>

COMNUH -'EQ! IBEX-' HEP , HUME: I. « NBAN s NNOBES
COMMON -'REG I ON-- A j B s C? B s HGR I BX ? HGR [ BY

number nudes

noino
\ )X - < B-A > •'•El .HAT <: NCiR 3 DK- 1 >

HY='.'B--C > .--ELnA T < HGR T 3>V-- 1 >

nn ios ix=1jNGRItjx
on loi ..JY=ijHfiRn:iY

hob=nob+i
KNOPF. C HOB V- rh ["I .QAT< IX~1)*HK
YNDDE<MDD)"C+n DAT-; JY -1>-*HY
IE '. IK, EQ. 1 . OR. IX. EQ.HGRIBX.UR. JY. EQ. 1. . UP. JY. EQ. NCR [BY!

1 DB)=1
103 CONTINUE
102 CONTINUE

HUM HER THE EQUA'I [QMS

NNllBES-NUU
HEQ=0

BD 3 04 HOP-1 jNHUiiEx
IE <IB<NDB>.EQ. 1? GO I LI 103
HEQ =MEQ+ 3.

l.B<HDTO = HEQ
gd rn 104

103 CONTINUE
IB<MUD>"=0

104 CONTINUE

BE TERM I HE ELEMENT IHCIBENCIES

J
K
K
K
K
K
K
K
K
K
K
K
E
E
K
K
K
K
K
K

IB<H K
K
k
K
K
K
K
K
K
K
K
K
K
K
K
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NEL~0
nn 106 ix-~i>ngriw- i.

3iD 1 05 jv--IjMi;iRij:iy«i

NEL^NEL+1
I ECMB , 1)=JY+NGRIDV*<IX-1>
J E < NEi . j £ !J --- I E < NEE > 1 > +NGR I DY
iEtNF:i.!i3)-it:aiELjp>+i

iE<Mra+i» n =ie<nel 5 i>
lEW.L + ijii'.^LEaHEl j3>
IE<NEL H>3}=TE<NELj 1 > +-

1

NEL~NEL+1
105 iTINTINUE
106 CONTINUE

MUM .-MEL

RETURN

:n:h

SUBROUTINE GRATJ
dimension :«,<ioo:

'jHsNELEMs IE)
1 ) j H '• t > I E < 1. j 3 )

COMPUTES THE Y. AMU V GRADIENTS AND THE RESULTANT DIRECTION

PRINT 10S
DO 1.0] J>i,NI-I.EH

T3i-Y<IE<J 5 3..'>-Y<lE'::i? V»
n^vaE ci j i>:> y<ie<Ijs;
'l&3"Y<IE<I»E>>--YaE<I»3;
S3a~xaf : a»3>) -kc iea
SlS-XaE'-l! :l .:'> lv- II: < J

S£l-K<IE < J »:>> :<•:. tec ] , i;

AREA ! <Sf't*T3 I SJ J*T1 ;"-:

AREA" AREA
KGRA U" 1 . /-S . /AREA* < T33*T I < I E< I. j 1 j>

YGRAD=1 . .--f:. .•AREiV^(S3;::*H':: IE': I j 1 >

i'V ' : A I AN;-' -:. YGARD > NGRAD >
';

:* 1 8 . -'3 . 1

[ 'R I NT 1 03 > I n XGRAD j YGRADj A
101 CQNi INUE

RET l RN

lOfi f-'UFTTAT <>v? OX? 8H ELEMENT ? 1 OX j 7H X-GRADj 1

1AN6I E FRO M + X ?.-'.•->

i 03 F'DRi'iAT (EOX? lb? i OH- El £. SjEXj E1S. 3 s 1 OK) Flu. 3>

EMU

MT31HKIE
)+S 13*1-1 (1L
115.937

OXs

:))+"f ie*HtiF.
fil*H<IE

,' ..' J

' > )

GHY-GRADs IQXj 161-1

287



PROGRAM STLINE < INPUT.. OUTPUT) f

A
'fc&&;iy^a'?*&wa

ft

FINITE ELEMENT PROGRAM TAKING INTO ACCOUNT THE GEOMETRIC ft

NONLINEAR I TV . JJNIDIMEHSIONAL ELEMENT MOVING INTO ft PLANE ft

WITH SIK DEGREES OF FREEDOM . RERFORMS AN UNCERTAINTY ANAL.
VERSION DNL277

__ _ _ _ j_j

ft

VARIABLES THAT HAVE TD BE SPECIFIED A
==========--===="==-=========-=============

ft

II - NUMBER OF PROBLEM A
ftft<I) = TITLE OF PROBLEM A

ft

MAXITR = MAM. NUMBER OF ITERATIONS ft

ACURCY = NEEDED ACCURACY A
„ _ ;_•

! II ILJjJC — i 1_J 1 !~!l_ I I
1 -'! l£, l™l\ LJi ! tLJJ_'l_-^- H

NEL = TOTAL NUMBER OF ELEMENTS ft

NODE = NODE NUMBER ft

;
:
.
;

'

f mn ri t.-
';, = v r;p ri qj T| t hi ,••.Tr ,-\

y ,;• hin ri tr \ — y r; pi r io T| t w rtj c- n

RL<KjNODE>= LOAD APPLIED IN THE LOCAL COORD. ft

ID<K?NDDE>= BDNDARY CONDITION IF 1 DISPL. CONSTRAIN A
A

N = ELEMENT NUMBER A
NI = NUMBER OF NODE I A
NJ = NUMBER OF NODE J A
FC"M) = M r3r!! I! ! !S n c' c

"
1

''"•'~-'."r TPTTY
pP,;'hl'j — Dnt;-;vnrJ DrtTTn /,

HfiTfN") — L
-t'
r T GHT •'"'

P1<N>" = INITIAL LOAD IN K DIRECTION ft

P£<N) = INITIAL LOAD IN Y DIRECTION ft

: ft

ft

ft

A
A
A
A
A
A
A

lc

I MENS I ON
I MENS I ON
I MENS I ON
I MENS I ON
OMMDN .-'B

OMMON -'E

OMMDN SB
OMMDN /B
HMMilW
L.-'l II !!_!' I

OMMDN
OMMDN
( 3 ) ? X (. 4

' !ft I ft Lt

VE<30? 10)? IK 10)
RL < 3 ? 3 > ? I D < 3 ? 3 >

S ; 5 ? 6 > ? Sft (. 5 ? 6 ) 5 EMASS < 3 )

ft ft < 13)
ASIL1.-- STC6j6)»EB<6>
AS I L£.-" A < 5 j 5 ) ? B < 5 > » DD 1 5 )

ASIL3-'- R<6?6)
ASIL4-- C0EF<6>jDC33)
.vr; T I ;=:.. .-••,] IV ,;' £ •;, , ri.'-.j |V / £ - ;= 'j

AS I US--' DELTA C3)
ASIL7.-- NI <3CO j NJCSCD » EC30) > PRC30) t THC30) j HGT<30> ? PI <30) j P
0) 5 Y<40)
L-'£.'

PRINT HE
READ 113s lis <AA*CI)jI='1j13>
IF CII.EQ. 0) GO TD Hi
PRINT 113s II? <AAa>5 1 = 1 j 13)
PRINT 114
PRINT 115
MEAND=6

READ MAX NO. OF ITERATIONS AND DESIRED ACURACY

READ 116 j MAX I TR? ACURCY

C***«** READ TOTAL NO. OF NODES=NNODE? AND ELEMENTS=MEL'******

READ 1 IF? NNDBEsNEL
PRINT 113? NNODEjNEL

DEFINE DIMENSION NDIM OF SYSTEM
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NDIM=3*NNDDE
PRINT 115

******reaD NODE INFORMATION

PRINT 114
PRINT 11.9

PRINT 114
1 1 READ 12 , NQDE ? X < NDDE > j Y ( NODE ) j ( RL (. K j NDDE > j I D < K s NODE ) » K=l 1 3

)

PRINT 131 ? NDDE? KCNDOE) > Y<NDDEI> s CRLCKj NODE::' » ID<Kj NDDE? » K=l > 3?
IF a-tDDE . HE . NNDDE > GD TD 101

I H I T I AL 1 2E D I SPLACEMENTS D C I > .-

COEFFICIENT MATRIK A(hJ) AND
RIGHT SIDE MATRIX EE<I ? L>

ICLEAR=0
DO 103 I=1>NBIM

n(i)=o.
do roe l=i?mbahd

SA<I.'L) = 0.

1 03 S (. I ! L > - .

DO 103 .J=i ? HDIM
103 A<I»J>=0.

DO 104 I=lsNBIM+MEAND
E(I)=0.

104 CONTINUE
IF aCLEAR.EQ.£> GO TO 106
PRINT 115

C
'*:**:«*.*• READ ELEMENT INFORMATION

KuUHl=0
PRINT 114
PRINT lSE
PRINT 114

1 05 READ 123? Hs til(N) > HJCN) * E<H> j PR<N> ? THCN> « HGT<N> > PI CN) > P£<H>
PRINT 134? N> NKN> ? HJCH) t E<N? > PR-CN) s THCH ' s HGT<N> s PKN)j P3aO
IF <N.NE.NEL) GD TO 105

N=l
NFLAG=0

106 CONTINUE

CALL MATRI <Ns SLs LEVELS

::ALL MASS (.H> NNDDEjNFLAGjSLj EMASSj LEVEL)

IF <N.EQ.NEL'J GO TO 107
H=N+1
GD TO 106

107 CONTINUE

*:*;'*::**:*:*:**:* APPLY LOADS ?K"*5K3Ki*jKS*:?KSif

DO 108 NODE=1j NNDDE
M=3*CNDDE-1>

DO 108 K=ls3
1 08 E < M+K > =E < M+K ) +RL < K > NODE

)
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C A
C A
C APPLY BOUNDARY CDNDITIDNS A
C ============^.=======?-.==^==============z:====:==S:=:==-.zr=== ft

C A
C ft

C A
CALL BOUND OS? SA, EMASS? IDs NDM? NBIMs MBANDp NNDDEp LEVEL? NFLAGp ME> A

C A
C ft

C A
C ft

C A
CALL SOLVE <S? NDIMj MEANH) ft

A

DD 109 K=1?HBIM A
109 B£(0=D<IO+DB<IO A

PRINT 114 A
PRINT lie A

A
ft

ft

CALL PRINTO <MpDjNDIMpKDUNTs ACURCYpMAXITRsNNOrO A

IF ai.EQ. 1> GO TO 110 A
N=l A
NFLAG=1 A
IF CKOUNT.LT.MAXITR> GO TO 1 06 A

110 CONTINUE A

NMDDE=7

CALL BE I NG < NDM p NMODE j MB s EMASS ? SA ? VE p H ? LEVEL > A
C A
O ft

C A
CALL UNCERT <NDM p VE? SAp EMASS pNMDBE? Up LEVEL

>

A
C A
f: ft

C - A
C A

111 STOP A
C A

il£ FORMAT (1H1) A
113 FORMAT <I£? 13A6> A
114 FORMAT CSXp li£H=================================================-== A

i==:r==r:=:====:^=:==^=:==^^ ft

115 FORMAT C-v.-O ft

116 FORMAT CISjFIO. 0) A
117 FORMAT (£13) A
118 FORMAT OX) 16HNUMBER OF NOBES=p I3p 5Xp 19HNUMEER OF ELEMENTS=? I3> A
119 FORMAT QK? 4HNDBE?£X? 1P.HH-CDDRBINATE? £X? l£HY-CODRDINATE? £Xp 11 A

1HHORIZ. LOADpEX? 7HCDNSTR. ? £X? 11HVERTC. LDAD?£X? SHCDNSTRp4X? A
£6HM0MEHT?4X; 6HCDSTR. > A

1£0 FORMAT CIS? £F1 0. Op 3<F9. 0? I 1>

>

A
i p -| jrqjr.M,--.j .; ov , t p , pf -j .1 i=;

, p ,- tr i p =; . p;y , f -\ _ py ; •_, p.

1££ FORMAT <ikj "7HELEMENT? EXp
* 6HN0BE IpEXp 6HN0BE E?£X? 15HMDBUL.DF A

1 F ! ''':":T i IK; 1 Sl-'Pfl T SKflN PfiTTPs •"'V* '^HTMTnKNFJv'^sPtXH ^uujruT. FK! 1 1 u C:

OrtVTAi rpDr-r./iv. h -i u---;-jir£SD, trrjijr-ir ••.

jiLnranL t ujr-. •_-!_- ? -rr'e? j. ii I--M iL_rir-. ? I Ur-.«--!_ .• in

i£3 FORMAT <3I3? lXsEJ.0. 0? 5F1 0, CO A
1 £4 FORMAT < 14 1 £1 9 ? 5X ? E 1 . 5 4X ? 5F 1 5. 5"? A

C A
END A
SUBROUTINE MATRI CNj SLp LEVEL

>

E
C E
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C E
COMMON /BASIL!./ ST<6»6)jEE<6? E
COMMON /'BASILS/' AC50* 50 > jB<50> jDDC50> B
COMMON /-BASILS/ R<6j6) E
COMMON ."-BASIL-V COEF < 6 > * B 033

J

B
COMMON ./BASILS/ AUXCeOj DAUX<6»6!> B
COMMON /'BASILS/' DELTA < 3) B
COMMON /BASIL?/' NK30> jNJ<30> jE<30> >PR«:3Q> jTHC30>sHGT<3CO j PKSO? jP E

1 £ < 3 > ? X < 4 > j Y C 4 ) B

qssssss COMPUTE USEFUL QUANTITIES DF PRESENT ELEMENT ****:*;*

CALL PARAM <.H> SLs Cj Sj MI j MJ» EAs 01 > QEt Hs XX:

CALL TRANSF (SLjCjS)

CALL FUCDIS <MI j MJjSL)

DEVELOP AUXILLIARY ARRAYS

DO 101 1=1?

6

AUX<I>=0.
DO 101 J=1j.6

101 DAUX<IjJ)=0.
KD=0
N i=EA* <

.

5+XX > *CDE> < £ >

WS=EA*:H*H* < COEF< S >+ 1 . ) / < 8 . *SL*SL >

OS CALL BELT CU1jWS>

B
SUM=0. E
DO 103 1=1 » 3 E

EXTRA=DELTA < I ) *CDEF < I +3 > ®COEF < I +3 > B
103 SUM=SUM+EXTRA B

IF CKD.EQ. !':' GO TO 105 E
IF CKD.EQ.SJ GO TO 108 B
AUX < £ ) =SUM+Q 1 * < 1 . +CDEF <

S

> > -Q£*'COEF < 4 !> + . 5*C0EF < S > * < COEF < S> * C COEF < 2 ) E
1+3. >+£. }*EA B
DO 104 -1=1 s 3 B

104 DAUXCSj J+3>-S.*DELTA<J)*COEF<J+35 E
BAUX Cat 4'? =BAUX < £ ? 4 ':< -QS E
KD=1 E
U1=EA*<.5+XX> E
WS=EA*rl*H/' < 8 . *SU*SL > B
GD TO 10S B

105 DAUX<2j£>=SUM+i.5*EA*CDEF <£>* f:caEF<£>+S. KEA+Q1 B
Hi =EA* < . 5+XX > ®COEF < £ > *CDEF i £ :> +Q 1 B

W£=M*H* < EA ffi < 3 . *:CUEF <. £ > * C . 5SC0EF <£> + !. > + 1 . > +Q 1 ':> / (IS. *SL*SL ) E

CALL BELT <W1<W£>

DO 106 J=l?3
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DAUX < J+3 , J+3 > =DELTA < J >

1 06 AUX < J+3 ) =DELTA < J > ®COEF CJ+3)
AUX < 4 ) =AUX < 4 > +Q£*COEF < £ >

DD 10? J=i,3
1 07 DAUX ( J+3 ? £ ; =DAUX <. £ ? J+3 ">

THE AUXILLIARY QUANTITIES HAVE BEEN DEVELOPED

KD=-S
GD TO 10£

108 CALL GLOEAL CSL:

CALL ST I FFN < M

1

1 M

J

, LEVEL >

RETURN

END
SUBRDU l I fit PARAN < N s SL s C t S ? M I > NJ 5 EA s Q 1 ? Q£ ? H 5 XX >

THIS SUBROUTINE COMPUTES SOME USEFUL QUANITIES
THESE PHYSICAL AND GEOMETRIC QUANTITIES ARE FUNCTION
OF THE DISPLACEMENTS AT EACH ITERATION

COMMON .-"BAS I L7-" N I <. 3 '> r N

J

(. 30 > > E (3 ) > PRO ) j TH<30> s HGT C3 > > P 1 03 ) > P
1 £ <. 3 > 3 X < 4 > ? Y 1 4 >

DX=X < NJ a-O ) -X < N I <

N

':>':<

DY=YCNJ<N>)-Y<NKN)>
SL=SQRT<DX*DX+DY«DY>
C-DX^SL
S=DY-"SL
MI=3*<NI<CM)-1)
MJ=3 :*<NJ<:N>-1)
EA=E < N )*1H <. N :> *'HGT < N )

H=HGTCN::'
XX=.5/-<Ci.+PRCN>)
Qi=piai)
Q£=P£CN)
RETURN

lNu
SUBROUTINE TRANSF <SL<C<S>

THIS SUBROUTINE EVALUATES THE TRANSFORMATION MATRIX WHICH
ENABLES US TO PASS FROM THE LOCAL COORDINATES SYSTEM
TO THE GLOBAL COORDINATES SYSTEM

COMMON .-BAS I L3," R < 6 ? 6

>

HO 101 1=1 j 6
DO 101 J=ls6

iOi R(IjJ)=0.
R<1j 1)=C

, j£';=--C

'-6>=-£.*S

Rt£
RC3

RCli
RCli
RCii
R<e
Rt2s V > =—

S

RO£s 4>=-C
6)=£.*C
5>=-.5*SL

2 Q2



R<4? £>=C
PX4j 3;=-S
Rc:4s4>=-S
R<456)=S.*S
R<5j£>=S
R<5? 3>=C
R<5»4>=C
ft':! 5? S0=-£. *C
R<6s5>=.5*SL
R'-'6? 6)=SL
RETURN

END
SUBROUTINE BELT <Wi»WS>

***sk** ***«»::*::**:«*'+*:**:**«**

AUXILIARY MATRIX USED FDR OPTIMIZING PURPOSES
TERMS INCLUDES THE PHYSICAL CHARACT. AND THE KNOWN DISPLAC.

CDMMDN •'BASIL6.-' DELTA C3)
DELTA <1>=W1
DELTA<£>=Wl-'3„+4„«W£
DELTA < 3 > = . 05*U 1 +3 . ®U£
RE I URN

END
SUBROUTINE FUCDIS <MI»MJ»SL)

THIS SUBROUTINE COMPUTES COEFF. FUNCTION OF KNOWN DISPLAC

101
10£
1 03
1 04

COMMON .•-BASILS/ R*C6j6)
COMMON .-'BAS I L4.-' CDEF < 6 > j D < 33 >

DO 104 1=1 j 6
COEFc:i> = 0.

DO 103 J=1j6
IF CJ.LT.4) GO TO 101
K=MJ+J-3
GO TO 10£
K=MI+J
TERM=RCJj I^IKKX'SL

COEF< I >=CDEF< I >+TERM
CONTINUE
RETURN

END
SUERDUlINE GLOBAL (SL>

SOMPUTATION OF STIFFNESS MATRIX FUNCTION OF DISPLACEMENTS
IN GLOBAL SYSTEM OF COORDINATES

101

10£
1 03

COMMON .''BAS ILL-'
COMMON .-'BASILS.--

COMMON ---BASILS.-'

DO 101 1=1?

6

BB<i:3 = 0.
iiij IOi J=l»6
ST<Is J)=0.
DO 103 M-l?6
DO 103 L=l?6
DO 103 1=1 ?

6

SUN=0.
DO 10£ J=ls6
SUN=SUM-:BAUX

ST (. 6 s 6 / ? BE 1
-! 6

R ( 6 « 6 )

AUX<6>sBAUXO i<6)

'L 5.j >--;

STaisD-STaisL^+RCMs i:>*sum
DO 104 1=1 5

6

DO 104 J=ls6
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104 BEa > =EB < I >+R<

1

1 J > *AUX < J

)

RETURN

END
SUBRDUT I HE ST I FFN ( M I s M

J

> LEVEL

)

STIFFNESS MATRIX AMD SECOND MEMBER

COMMON '"BAS I LI • ST C 6 j 6 ) » BE ( 6 ?

COMMON .'BASILS/' AOOjSOJjBCSOjDDOO)

DO 101 1=1 j 3
B<MI+I>=B<MI+I>-BB<I>
B ( M. J :- 1 > =E < M.J+ 1 ) -BB < 3+ 1 >

DO 101 J=1j3
A c: M I + 1 ? M I +-J ) =A < M I +

1

, M I +J > +STa s J )

A ( M I + 1 j M-J+.J > =A ( M I + 1 5 MJ+.J > +ST ( I j 3+J >

ACM.JHjMI+.J)=A<MJ+I!>MI+J>+ST<3+I?.J>
101 A<MJ+IiMJ+J>=A(MJ+I»MJ+J!>+STC3+I»3+j:>

ssssBEBUG—***

IF (LEVEL. NE.£> RETURN

DO 103 I=MIjMI+6
PRINT 103 , CA<I>J>»J=MIjMI+6>

10S CONTINUE

RETURN

103 FORMAT (5X»6<F10.3»2X>?

END
SUBROUTINE SOLVE (S? NDIM? MBAND>

TU 1
1 I 1 J SUBROUTINE
USING ! HE bAU;

SOLVE THE LINEAR SYSTEM OF EQUATIONS
SEIDEL ELIMINATION PROCEDURE

101

nt

DIMENSION S<::50 ? 6::>

COMMON •'BAS I L£y' A < 5 ? 5 > s B ( 5 > ? DD < 5 >

FORWARD REDUCTION OF MATRIX ( GAUSS ELIMINATION >

DD 103 N=1»NDIM
DO 103 L=£?MBANB

IF (S(N?L>.EQ. 0. > GO TO 10c
I=N+L-1
C=S(NsL>^S<N? V>
J=0
DO 101 K=L?MBAMD

J=J+

1

S(IsJ)=S(I?J)-C«S(N«K)
S<N>L>=C

CONTINUE
103 CuNl INUE

FORWARD REDUCTION OF CONSTANT

DO 105 N=1?NDIM
DO 104 L=SsMBAND

I F ( S (

N

j L > . EQ . . > GO TO 1 04
I=N+L-1
B(I>=B(I>-S(NpL)*B'<N>
IF (S(Ns 1>.EQ. 1. ':> B(N>=0.
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104 CONTINUE
105 Bai:3=E<H>.-'S'::N?i>

SOLVE FDR UNKNOWNS BY BACK SUBSTITUTION

DO 107 M=E?NBIM
N=NBII1+i-M
BO 106 L=8«.riBANB

IF CS<N»L>.EQ. 0.) GO TO 106
K=N+L-1
B<N>=B<N>-S<NjL>*B<K>

i06 CONTINUE
107 CONTINUE

DD 108 N=i?NBIM
DD<N>=B<N)

108 CONTINUE
RETURN

END
SUBRDUT I NE PR I NTO < M ? B t NB I N t KBUNT , ACURCY j MAX I TR •> NNOBE >

THIS SUBROUTINE PRINT THE RESULTS OF THE PROGRAM

101

1 08

i 03

HI MENS I ON BOO)
COMMON .-"BASILS'- A<50j50>»B<50>»DD<50>
IF <KDUNT.EQ.0> GO TO 108
IF (KDUNT.EQ. 1) GO TO 101
PRINT 110? K.OUNT
PRINT 111
GD TO 103
PRINT 118
PRINT 111
GO TO 103
PRINT 113
PRINT 111
PRINT 114
PRINT 111
BO 104 NDBE=1? NNOBE

K=3*<NDDE-l>
PRINT 115? DCK+l)

NDBE?B<K+£)
B<K+3>

104

105

EQ. 0) GO TO 107

1 06
107

1 08

1 09

PRINT 116)
PRINT 118 j

PRINT 117
CONTINUE
IF CKOUNT
K=0
K=K+1
zz=db<k::'
if cabsczzs.gt. acurcy) gd to 106
if ck.ne.nbim> go to 105
M=l
PRINT 111
PRINT 119
PRINT 111
RETURN
IF (KOUNT.ER.MAKITR) GO TO 109
KDUNT=KOUNT+l
Bu 108 1 = 1 ? M.UIN

B<I)=0.
BO 108 J=1jNDIM
A < I ? J > = .

N=l
RETURN
PRINT 18 0? NAKITR
RETURN

1 1 FORMAT :'. 3 OX s i 9HB I SPLACEMENTS AFTER j 1 4 > IX t 1 OH I TERAT I DNS >
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ii£ FORMAT <

i 13 FORMAT
114 FORMAT
115 FORMAT '

116 FORMAT (

117 FORMAT
118 FORMAT
119 FORMAT
ISO FORMAT

IS)

3 OX j 35HDISPLACFMEMTS AFTER FIRST ITERATION)
3 OX? £1H INITIAL DISPLACEMENTS)
3 OX? £1HNQDE DISPLACEMENTS::'
-"-*; 1 H+ j 6X j 1 OHHOR I ZONT . = ? F 1! 7H

1H+? IX? 13s 10HVERTICAL =?F15„5? 7H + >

£9X? 1H+?6X? 10HPOTATION =?F15=5? 7H + )

SOX? 34H CONVERGENCE HAS BEEN DETAINED?-'')
IX? 31HMETHDD FAILED TO CONVERGE AFTER? 14? IX? 10HITERATION

END
SUERuUT I NE MASS < N ? HNDDE ? NFLAG ? SL ? EMASS ? LEVEL

)

COMMON .-EASILZ/' NK30) ? N-K30) ? E<30) ? PRC30) ? THC30) ? HGTOSO) ? P1C30) ? P
1 £ ''. 3 ) ? X <. 4 ) ? Y '. 4 )

D I MENS I ON EMASS < 3 )

IF CNFLAG.EQ. 1) RETURN
NN=NNOBE*£

n=<Ni<N)-i)*e
JJ=-<NJ<H>-i>*£

a=th<n)'*hgtc:n)
GAM= 1 .

V=A*SL
SM=V*'GAM

DO 101 1=1 ?£

EMASSa I + 1 ) =BMASS < 1 1 + 1 ) +SM.'£

.

EMASS C JJ+ 1 ) =BMASS <. JJ+ 1 ) +SM--'£

.

10i CON I I HUE

IF >::LEVEL.NE.£) RETURN
PRINT 10S
PR I NT 1 03 ? '-. EMASS <1 ) ? I = 1 ? NN )

RETURN

10£ FORMAT CSX? 13H MASS VECTOR? .•'.)

103 FORMAT CSX? 3CF1 0. 3? £X)

)

END
SUBRDUT I NE BE I NG <. NN ? NMDDE ? MM ? EMASS ? AST ? VE ? U s LEVEL

)

:*::*
:SS:*:^*::+:^:<r::'*^:f*«*'*:;ifcSS*:*SS

DIMENSION BMASSC30)? ZO30? 1 0) ? ASTO30? 1 0) ? WC3CD? VEC30? 1 CO

SS3ES5KSDEIBUG**'***

IF (LEVEL. NE.£) GO TO 1 0£
PR IN! i i 3 ? < EMASS < I ) ? 1 = 1? NN >

DO 101 1=1 ?NN
PRINT 113? CAST CI? J)? J=1?MM)

101 CONTINUE

iOS CONTINUE

DO 103 1=1 ?NN
DD_103 J=MM+1? NMDDE

1 03 AS l < I ? J ) = .

J
J
J
J
J
J
J
J
J
J
J
J
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
L
L
L
L
L
L
L

L
L
L
L
L
L
L
L
L
L
L
L
L
L
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DO 105 1=1 » NN
X=EMASSCn
IF CX.GT. 0. y GO TO 104
PRINT 114? I

IF=1
GD TD 106

104 EMASSC i;> = l,,.-"SQRT'::>0

105 CONTINUE
106 IF CIF.EQ. 1> STOP

DD 107 1=1 j NH
L=I-1
MR=MIN0<MM»NN-I+1)

DD 107 -.1=1 5 MR
K=L+J

1 07 AST C 1 1 J > =ftST(I. J > *BMASS CI >*BMASS C K

>

MATRIX IM SYMMETRIC MODE

MM=NMDDE
DD 108 .J=1?MM

H1 =
DD 108 I=MM-.J+1?NM

,i C I ? J > =AS l C 1 +M 1 j MM—.1+ 1 >

N1=N1+1
108 CDMTIMUE

*: &.m* jjeg ijg* :***

IF CLEVEL.NE.fi> GD TD 110
DD 109 1=1 j MM

PRIMT 113? <Z<I s J)j.J=1?MM)
109 CDMTIMUE
110 CDMTIMUE

IMD=£
MM=30

CALL RSBE I G C MM ? NN ? MMDDE t Z

,

I MD , U

>

VE

>

DD 111 1=1 j MM
X=BMASSCI>
NEV=MM
BMASSC I>=1. --

-X**£
DD 111 J=i?NEV

VEC I ? J)=VEC I ? j>*x
ill CDMTIMUE

DD 11£ 1=1 , MMDDE
Ma>=SQRTa-Ki::0
PRIMT 115? hlJCI)
PRIMT 116

M£=MM--'£
DD IIS J=1?M£

Li'K=£*- I— 1

PRIMT" 117! J+IjVECKKj I)jVE<CKK+1j i>
11£ CDMTIMUE

RETURN

113 FORMAT C5Xj8<F10.3jSX>)
114 FORMAT CSX? 3HZERD MASS? 15>
115 FORMAT C-vSXj £0HTHE FREQ. DF MODE ?£X?I£? 6H IS = »F10.4/v>
116 FORMAT CSX j 3£H+ NODE + X-EIGEN + Y-EIGEM ? .-v >

117 FORMAT <1I4?£E15.5>
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END
SUBRQUT I r

J,E BOUND <. S s SA BMASS ? I D» NDM j ND IM » MBAHD s NNDDE j LEVEL s NFLAG > M
IE)

COMMON ••'BASIL2--' A(505 50>5B<50)jBD<50>

DIMENSION Sc:5 0?fcO5 SA<30s4)j BMASS<30>
DIMENSION ID<3?30?

DD i0£ NQDE=ii>NNDDE

IFVnKKjNODE^EQ.O) GO TO 102
JJ=3SKNDDE-i) f-K

DO 101 J=1jNDIM
a<

j

? jj>=o.
i 01 AC JJj J> = 0.

ACJJj JJ)=1.
E<.J.JJ = 0.

10£ CONTINUE

DO 103 I=1jNDIM
Ou i03 L=i5MBAND

S(IjL)=rt<I.L+I-l)

103 CONTINUE

ND=NNDBE-*E
ME--4
NB=0

NF=

DO 105 I=i3ND»£
NFB=0
DD 104 J=1?MBj2

1 1 = 1 i-NF

.J.J=J+NFE

Sft(I 3 J)=S(IIjJJ)
SA<CIj J+D-SCIIj JJ+i>

SAc".I + 1sJ)=S<II + 1jJJ>
sax I + i > j+ i >=s< i i+i 5 jj-i-e >

MFB=NFB+1
CONTINUE
NF=NF+1

CONTINUE

ssssDEEUGSSss

IF (LEVEL. HE. S) GO TD 107
DO i06 1=1 ? ND

PRINT 1;; 4j <SA<Is J>5 J=i j MB)
CONTINUE
CONTINUE

DO 110 1=1 5 ND
IB=I-NE
DD 108 J=lsME

IF CSA<Ij-J>.EQ. I. -> GO TO 109
SIMT=SA<Ij J)
SA«CIEjJ>=SINT

1 04

1 0?

106
107

m
n
M
M
M
M
M
M
M
M
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M
M
n
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M
M
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M
M
M
M
M
M
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IF {NFLAG.EQ. 1> GO TO 1 OS

BMS=BMASS{I>
BMASS {IB>=BMS

103 CDHTIHUE
GD TD 110

109 HB=NB+1

110 CONTINUE

NBM= I E-

1

s?*;s w. nfB I !f ssss

IF {LEVEL. NE.^ GO TD 113
DO 111 I=1jNDIM

PRINT 114 3 <Sa»J>» J=1?MBANB'J
111 CDHTIHUE

PRINT 114= (Ed); 1 = 1 ? NDIM>

HO US 1 = 1? HUM
PRINT 114 5 CSA<I»J>? J=1»MB>

iiS CuNi INUE

PR INT 1 1 4 5 { BMASS { I > 1 1 = i > HUH >

113 CONTINUE

RETURN

114 FORMAT {5Xj6<F10.3»eX))

end
SUBROUTINE UHCERT CNDj VEs AST? BMASS? NMODEj Ws LEVEL?

$$#« ;*; *; in$ jfew hK ** jks ;$ ifc fl; ;*$^^KXXw^x^^^HKXKI^KV.XKJKIKJKIKXSKiKBKXSK

D I MENS I ON FR 1 { 3 s 1 > s FR£ C 3 , 1 0?
ti I HENS I ON VE { 3 ? 1 > ? U { 1 > s BMASS < 3 > ? HUH 1 { 3 ) t DEN < 1 >

D I MENS I ON AST { 3 s 1 > j NUM£ < 3 >

DO 102 1=1? NMODE
VECT=0.

DD J 03 K=1?ND

DO 101 J=1jND
VECT=VECT+ < VE < J j I > **£ ) *BHASS { J '?

101 CONTINUE
DEN<I>=S.*W<I>*VECT
HUH 1 { K > = { W { I ) *'*£ > *VE { K j I ) **£*BMASS { K )

NUM£ < K ::• =VE < K s I > **£®AST { K ? 1 >

FRKKs I >=NUM1{KVDEN< I >

FR£ < K ? I '.:< =NUM£ { K > /'DEN { I >

10£ CONTINUE

SKSS JtE T|FH I 1 1j$**S

IF {LEVEL. NE. £5 GD TD 105
DO 103 K=lsND

103 PRINT 106? {FRUK? I>? I = 1?HHDDE>

DO 104 K=i?ND
1 04 PR I NT 1 06 ? { PRE { K ? I } ? I = 3 , NMODE

>

PR I NT 1 06 ? { HUH 1 { I > ? I = 1 s NMODE

)

PRINT 1 06 ? { NUM£ { I > ? I = 1 s NMODE

)

PR I NT 1 06 ? { DEN {

I

>

t

I = 1 j NMODE

>
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105 CONTINUE

CALL MOMENTS < ND .- NMODE » H * FR 1 j FR£ s LEVEL >

RETURN

106 FORMAT CSX? SCE15. 5s £X? )

END
SUERDUT I HE MOMENTS <ND > NMODE s

N

, FR 1 s FR£ , LEVEL)

D I MENS I ON FR

1

i 3 ? 1 > s FR£ < 3 > 1 > » W < 1 ) ? EXP CI > 5 VAR < 1 >

DIMENSION CFVCKO? SGK30>s SG£<C30>5 EXi<30)s EX£<3Q>

DD 101 1=1 5 ND
SGi(D=. 05
sG£a:>=o. 04
fc.X 1 < I > = . 0£
Exsa:>=. 0£

101 CONTINUE

DO 104 1=1 5 NMODE
SUM 1 = 0.

SUM2=0.

DO 10£ -1=1 s ND
SUM 1 = < FR 1 < J ? I ) *E;«: 1 < J > +FR£ C J ? I ) *EX£ < J > > +SUM

1

SUM£= < FR i ( J 3 I ) **£*SG 1 (. J > +FR£ (. J ? I ':> *'*£SSG£ (. J > ) +SUM£
10£ CONTINUE

j£ jaj $• jah Tt C" "P [
j

|~ W. W.KS

IF CLEVEL.NE.S) GO TO 103
PRINT 5 3*SUMi»SUM£=*»SUMisSUM£

i03 CONTINUE

FXP<I>=H<I)+SUM1
VftR<I)=SUM£
CFV •-. I > =SQRT < VAR < I ) ) -'EXP* I >

104 CONTINUE

PRINT 106
DO 105 1=1 5 NMODE

PRINT 107, I s EXP<I>jVftR<:i)»CFV<I)
105 CON! INUE

RETURN

106 FORMAT </w5Xj 8H*MDDE *? 38HEXPECT. * VARIANCE * COEF.

107 FORMAT <5Xj I3j £X? 3<E15.5j £X>)

END

OF VA
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This program evaluates the first thirty frequencies and the asso-

ciate modes of vibration, using subroutine RSBEIG which combines BANDR,

TQLRAT and TQL2 obtained from Argonne National Laboratory as part of

the EISPACK subroutine package.

The input parameters are the stiffness matrix [A] (given in Band

form), the mass matrix [SMASS] and the nodes at the boundaries.

These matrices can be computed by any of the existing finite ele-

ment codes, using plane strain or stress triangular elements.

PROGRAM DEI GEN <. INPUT; OUTPUT - PUNCH )

1*1 38 W. SI*:*SS* 1*1 SI ft! 1*1 &. 1*1 SI SI 1*1 id SI 1*1 1*
1
! 1*1 SI 1*1 SI SI 14 : SI* 1*1 1*1 ?•£ S: 383K?E 3K38S8 3K3K3K5K3K IS 58

£•10

D I MENS I ON EV < 3 1 ) > HEBC < £ )

1 SriASS < £ o ) ? A<1S0»160 >

DIMENSION W<160)
D I MENS I UN Z (16 0? 40)

DIMENSION IK 160 j 10)

DATA LEVEL .-'£.•-

INITIALIZE

NUMEC = ?
NEAND = 4
MM = NEAND
NEV = 10
NN - 160

DO £10 K = 1) NUMEC
READ 10 05? NPEOO
PRINT 10 05 j NPEaO

CONTINUE

NBC ~ £ *: NUMEC
DO ££3 I = 1 ? NUMEC

II = £ *" I - 1

NEBCXII) = £ * NPBU)

NPB<15)r

££3 NEBcai+n = NEBCai) +

1003 FORMAT <I5)

DO 300 1=1? NN
READ £0 » <A<Ij J)j • J= 1? NEAND )

3 CONTINUE
READ £0? CSMASS'CI) * 1=1 j NN)

£0 FORMAT >;5E15.6)

I FLAG =

PRINT 11? CSMASSCDj 1 = 1 ?NN)
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C REDUCE CLASSICAL EIGENVALUE PROBLEM A*X = E*X

TRACE = 0.

DO 120 I = Is MM
TRACE = TRACE + ABS< Add) )

X = SMASSCI)
IF O-;. GT. 0. ) GQ TD 110
PRINT 12 j I

12 FORMAT <: 2Hs ® OMEG. OR ZERO MASS EQUATION*? 15)
I FLAG ~ 1

GO TO 120
110 SMASSCI) = 1. s SORT <>0
120 CONTINUE

IF a FLAG. ME. ) STOP
DO 130 I - Is MM
L = I - i

MR = MI NO (MM? NN -I +i )

DO 130 J - Is MR
K = L + ,J

130 ft(ljj) = A<I?J) * SMASS<I> *: SMASSCK)
C

IMPOSE BOUNDARY CONDITIONS ON A

IF < NEC. LE. ) GO TD 100
DO 140 N = Is NEC
I = NEDC<N>
A CI j 1) = 100. * TRACE
DO 140 J = 2s MM
ft < T ; J ) - .

L = I - J + I

IF <:. L. LE. > GO TO 140
A < L ? J ) == .

.L 4 l.l L-Ui Till iuL
C
C sssSiSss DEBUG ass**"**

IF ( LEVEL. EQ. 1 ) GO TO POO
i..:

DO 9 1=1? MM
PRINT 11? < A(I?J> ? J = Is MM )

9 CONTINUE
C
C MATRIX IN SYMETRIC MODE

200 I'D i J = 1? MM
Ml = NEC
DD 1 I = MM- J+ls NN - NEC
Z< Is J ) = A < 1 * Mis MM-J+1 >

Ml = Ml + 1

I CONTINUE
C
c
C •#:#:#:#:#:#. DEBUG s:s::*siKS

IF < LEVEL. ~EQ. 1 ) GO TO £01
C

DD 10 I = Is MM
PRINT 11? < Za.-J) ? J = Is MM )

II FORMAT < 2Xs 10a-"10.3s2X) )

10 CONTINUE
£01 CONTINUE

C
IMD = £
MM = 160

CALL RSEE1G ( MMs MMs MMs Zs INDs Ws A )

U
PRINTs^INB=£s IMD

C
DO £02 1=1? MM

£02 PRINT? *N = *'? U<I)
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DQ 918 1=1) NN
913 PRINT 11»<A<IjJ:>jJ = 1? NN>

BD 919 J = 1 j HEV
EVCJ) = t-K-J + NBC )

ev<j) = sqrtcevcj:> >

PUNCH £014? -J ? EVCJ)
£ 1 4 FORMAT <. 1 1 5 * 1 F I . 3 )

PRINT £014? J? EV<J>

919 CONTINUE

9c I

J

BD 9£0 I = IjNM

V, = SMASSa J

SNASSa? = 1. s K*®2
BO 9£0 J = 1? NEV

U(IjJ) = H(l! J+MBC? * X

3u ££-3 N =" 1j NEV
BD £63 M = 1)80

KK = £ * M - 1

£63 PUNCH £015? Kj LKKKjN)? U(KK+1?N>
£015 FORMAT < 1 1 12s 2E15. 6 >

DO 1001 I = IjNN
100 J PRINT 11) < AC I j..0) J= IjNEV)
100 STOP

END
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Subroutine UNCERT performs an uncertainty analysis related to the

previously computed eigenvalues and corresponding eigenvectors U.

The procedure is based on a perturbation scheme.

ST ( ) = STIFFNESS MATRIX

SMASS ( ) = VECTOR OF LUMPED MASSES

SUBROUTINE UNCERT < U ':>

C

i_:

COMMON •••- BAS4.-" NUMNPjNUMEL»NUMBC»NMDDE
CD i

iMQN ••' EAS •" IIHt N EV j NBC s EV < 3 i > * hiEBC < £ ') >

1 SMASS<200>» BCaOHO? EiKKEOO) j SN< £00) ? NUMK200) j

£ ST<170»45)
CDMMDN / BAS5.-- NN j PSP > I TR j NBAND

D I MENS I ON BEN (.1 5> » FR1 < i j 3 > ? U < 1 j 1 5 U

DATA LEVtL-' i
•"

EQU I VALENCE (. ST j FR 1 >

JJU 1 i — I J I lev

BD 1 K. = l+Ni'i- ? riii

i-i.i c J — 1+N'BUj Nn
VECT = VECT + <. UCJjI) S!*£ > * SMASS 1

: J)
CONTINUE

EOKD = £. * EVa> * VECT
NUMKK) = < EV<I>'*;:*2 ) s IKKs !>*"*£ *: SMASSCK

IF < BEhKI). EQ. 0. ) GD TD 1

FR 1 < K , I ) = NUN i < K > / BEN C I >

1 CONTINUE
C

I F<LEVEL. NL. £ ) GQ TD 10

~n A [/ i WW

4 PRINT SjCFRKKiIJ) I = 1 j NEV >

5 l-uRMAF <. 5X»8<Ei£.4»£X> >

PR I NT 5 j ( MUM i(I)»I = 1 j NEV )

PRINT 5L (DEMa>5 1 = 1? NEV

>

10 CONTINUE

CALL MOMENTS < FRls NN

RETURN
run
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Subroutine MOMENTS is called from subroutine UNCERT and computes

the second statistical moment and the coefficient of variation of the

provided eigenvalues.

EXP ( ) = EXPECTED VALUE OF THE EIGENVALUE

VAR ( ) = VARIANCE OF THE EIGENVALUE

SUBROUTINE MOMENTS <FRls NN )

(j *: #: W. S: W. W. W.W.&. ;*•'S '#. 'M Si *: S:W W. :*: *! *:$ SI *! '* W. W.£ :«• :ft SiS Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si Si SI Si Si Si It: S

C
COMMON •-' BAS.-' MM , NEV s NBC j EV < 3 1 ) > NEBC < £ > ,

1 SMASS < £ > j B < £00 ) j EX 1 < £ ) ? SN < £ CO > NUM 1 < £ >

£ j ST<170»45)
C

DIMENSION FR1 <. 1 00? 30) , EXP< 15> > VAR<15) > CFVOS)
c

1

DO i I = 1+NBC.n NN
SN<I> = 0. 05
L?U(D = . 0£

CONTINUE

jJu c i — x f ncv
SUMl = 0.

SUM2 = 0.

c

c

HO 3 J = i+NBCj NN
SUM! = <: FRKJjD* EXKJ) > + SUMl
SUMS = C FRKJjI>*K£ ® SN<J) ) + SUMc

CONTINUE

EXP<I> = EV<I) + SUMl
VAR a;' = SUM£
CFva) = sqrtc vara) > -•• EXPU)

CONTINUE

PRINT 4
4 FORMAT <5Xj9« *MODE* EXPECT VARIANCE COEF. VARsO

DO 5 I = i> NEV
PRINT to I j EXP<I)» VAR<Dj CFV<I>

UUNl 1NUE

RETURN
Erin
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FEDERALLY COORDINATED PROGRAM OF HIGHWAY
RESEARCH AND DEVELOPMENT (FCP)

The Offices of Research and Development of the

Federal Highway Administration are responsible

for a broad program of research with resources

including its own staff, contract programs, and a

Federal-Aid program which is conducted by or

through the State highway departments and which

also finances the National Cooperative Highway

Research Program managed by the Transportation

Research Board. The Federally Coordinated Pro-

gram of Highway Research and Development

(FCP) is a carefully selected group of projects

aimed at urgent, national problems, which concen-

trates these resources on these problems to obtain

timely solutions. Virtually all of the available

funds and staff resources are a part of the FCP.

together with as much of the Federal-aid research

funds of the States and the NCHRP resources as

the States agree to devote to these projects."

FCP Category Descriptions

1. Improved Highway Design and Opera-

tion for Safety

Safety R&D addresses problems connected with

the responsibilities of the Federal Highway

Administration under the Highway Safety Act

and includes investigation of appropriate design

standards, roadside hardware, signing, and

physical and scientific data for the formulation

of improved safety regulations.

2. Reduction of Traffic Congestion and

Improved Operational Efficiency

Traffic R&D is concerned with increasing the

operational efficiency of existing highways by

advancing technologv. by improving designs for

existing as well as new facilities, and by keep-

ing the demand-capacity relationship in better

balance through traffic management techniques

such as bus and carpool preferential treatment,

motorist information, and rerouting of traffic.

* The complete 7-volume official statement of the FCP is

available from the National Technical Information Service

(NTIS), Springfield, Virginia 221G1 (Order No. PP. 242057,

price $45 postpaid). Single copies of the introductory

volume are obtainable without charge from Program
Analysis (HRD-2), Offices of Research and Development,

Federal Highway Administration, Washington, D.C. 20590.

3. Environmental Considerations in High-

way Design, Location, Construction, and
Operation

Environmental R&D is directed toward identify-

ing and evaluating highway elements which

affect the quality' of the human environment.

The ultimate goals are reduction of adverse high-

way and traffic impacts, and protection and

enhancement of the environment.

4. Improved Materials Utilization and Dura-

bility

Materials R&D is concerned with expanding the

knowledge of materials properties and technology

to fullv utilize available naturally occurring

materials, to develop extender or substitute ma-

terials for materials in short supply, and to

devise procedures for converting industrial and

other wastes into useful highway products.

These activities are all directed toward the com-

mon goals of lowering the cost of highway

construction and extending the period of main-

tenance-free operation.

5. Improved Design to Reduce Costs, Extend
Life Expectancy, and Insure Structural

Safety

Structural R&D is concerned with furthering the

latest technological advances in structural de-

signs, fabrication processes, and construction

techniques, to provide safe, efficient highways

at reasonable cost.

6. Prototype Development and Implementa-

tion of Research

This category is concerned with developing and

transferring research and technology into prac-

tice, or. as it has been commonly identified,

"technology transfer."

7. Improved Technology for Highway Main-

tenance

Maintenance R&D objectives include the develop-

ment and application of new technology to im-

prove management, to augment the utilization

of resources, and to increase operational efficiency

and safety in the maintenance of highway

facilities.
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